• Title/Summary/Keyword: 보강설계

Search Result 1,674, Processing Time 0.033 seconds

A Study on Rainfall-induced Erosion of Land Surface on Reinforced Slope Using Soil Improvement Material (지반 개량재에 의한 보강사면의 강우시 표면침식에 관한 연구)

  • Kim, You-Seong;Kim, Jae-Hong;Bhang, In-Hwang;Seo, Se-Gwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.1
    • /
    • pp.49-59
    • /
    • 2013
  • Heavy rainfall intensity may cause shallow slope failures and debris flow by rill erosion and scour on land surface. The paper represents the difference between native soil (weathered soil) and reinforced soil, which is mixed by hardening agent with flyash as main material, for investigating experimental findings of rill erosion and erosion. Results obtained from artificial rainfall simulator show that erosion rate of reinforced soil mixed with hardening agent is reduced by 20% because an amount of eroded soil on slope surface is inversely proportional to the increase of soil strength. For example, rainfall of 45mm (at the elapsed time of 25mins in rainfall intensity of 110mm/hr) triggers rill erosion on native soil surface, but the rill erosion on reinforced soil surface does not even occur at 330mm rainfall (at the elapsed time of 3hrs in rainfall intensity of 110mm/hr). As a result of slope stability analysis, it was found that the construction method for reinforced soil surface would be more economical, easy and fast construction technology than conventional reinforcement method.

Evaluation of Shear Strength of Unreinforced Masonry Walls Retrofitted by Fiber Reinforced Polymer Sheet (FRP로 보강한 비보강 조적 벽체의 전단강도 산정)

  • Bae, Baek-Il;Yun, Hyo-Jin;Choi, Chang-Sik;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.305-313
    • /
    • 2012
  • Unreinforced masonry buildings represent a significant portion of the existing and historical buildings around the world. Recent earthquakes have shown the need for seismic retrofitting for these types of buildings. Various types of retrofitting materials (i.e., shotcrete, ECC and Fiber Reinforced Polymer sheets (FRPs)) for unreinforced masonry buildings (URM) have been developed. Engineers prefer to use FRPs, because these materials enhance the shear strength of the wall without expansion of wall sectional area and adding weight to the total structure. However, the complexity of the mechanical behavior of the masonry wall and the lack of experimental data from walls retrofitted by FRPs may cause problems for engineers to determine an appropriate retrofitting level. This paper investigate in-plane behavior of URM and retrofitted masonry walls using two different types of FRP materials to determine and provide information for the retrofitting effect of FRPs on masonry shear walls. Specimens were designed to idealize the wall of a low-rise apartment which was built in 1970s in Korea with no seismic reinforcements with an aspect ratio of 1. Retrofitting materials were carbon FRP and Hybrid sheets which have different elastic modulus and ultimate strain capacities. Consequently, this study evaluated the structural capacity of masonry shear walls and the retrofitting effect of an FRP sheet for in-plane behavior. Also, the results were compared to the results obtained from the evaluation method for a reinforced concrete beam retrofitted with FRPs.

An Experimental Study for Flexural Characteristic of Concrete Beam Reinforced with FRP Rebar under Static and Fatigue (FRP 보강근을 사용한 콘크리트 휨부재의 정적 및 피로특성에 대한 실험적 연구)

  • Sim, Jong-Sung;Park, Sung-Jae;Kang, Tae-Sung;Kwon, Dong-Wook;Lee, Ki-Hong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.313-316
    • /
    • 2008
  • Corrosion of steel in the reinforced concrete structures is one of the main reason of degradation. It causes that lifetime of structures is shortened and maintenance cost is increased. And it also causes degradation of structures like bridges which are under repeated load. So, many research have been performed about FRP rebar. But there are few research about FRP rebar under fatigue. This study is to examine flexural characteristic of concrete beam reinforced with FRP(CFRP, GFRP) rebar under static and fatigue for considering the application. The specimens that used in this study are designed by ACI 440.1R-06 and reinforced with CFRP(CR) or GFRP(GR) overly. In the result of static bending test, all specimens were failed at compression phase. In fatigue test, the fatigue stress level was 60%, 70% or 80% of the static bending strength. Most of the specimens seemed to be compressive failure, but CR-60 and CR-70 specimens were failed with rupturing of tension bar.

  • PDF

Pseudo-Ductile Hybrid FRP Sheet for Strengthening Reinforced Concrete Beams (유사연성 하이브리드 FRP 시트를 이용한 RC 보의 휨 보강)

  • Ha, Sang-Su;Choi, Dong-Uk;Lee, Chin-Yong;Kim, Kil-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.239-247
    • /
    • 2008
  • Use of both carbon fiber (CF) and glass fiber (GF) at the same time to strengthen existing flexural members was exploited. Using a proper volumetric GF / CF ratio, the CF can rupture first followed by subsequent rupture of GF at higher stress and strain showing a pseudo-ductile behavior. A theoretical study indicated that the ratio is 4.62 : 1 and higher where the pseudoductile effect can be shown. Flexural tests of plain concrete beams strengthened using fibers were first carried out. Hybrid FRP sheet using 8.8 : 1 ratio was then fabricated and the sheet was used to strengthen reinforced concrete beams. The RC beams strengthened using 1-ply and 2-ply hybrid sheets both revealed increased strength over a non-strengthened beam and ductile flexural behavior. A comparable beam strengthened using CF also showed increased strength but with limited ductility.

Reliability Analysis of Reduction Factor for Structural Design Guideline(draft) of Fiber Reinforced High Strength Concrete (섬유보강 고강도 콘크리트 구조설계지침(안)의 저감계수에 대한 신뢰도 분석)

  • Kim, Ah-Ryang;Choi, Jungwook;Paik, Inyeol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.1
    • /
    • pp.100-108
    • /
    • 2021
  • The purpose of this study is to analyze the reliability index of a design by applying the reduction factor of the recently developed fiber reinforced high strength concrete design guideline(draft). By collecting material and member test data performed for the development of the design guideline(draft), statistical characteristics of material strength and member strength analysis equations are obtained. A simul ation that appl ies the material statistical characteristics and the member anal ysis equation of the design guidel ine(draft) is performed, and the statistical characteristics of the section strength are calculated by combining the statistical characteristics of the analysis equation. Reliability analysis was performed by applying the load combination of the domestic highway bridge design code and concrete structural code, and it was confirmed that the design that applies the reduction factor for materials and members suggested in the design guideline(draft) satisfies the target reliability index.

Effect of the Combination of Point Loads on the Design Flexural Capacity for Fiber Reinforced Concrete Floor Slab (집중하중 조합에 의한 섬유 보강 콘크리트 바닥슬래브의 설계 휨 내력)

  • Lee, Jong-Han;Cho, Baik-Soon;Kim, Jung-Sik;Cho, Bum-Gu;Ki, Han-Sik
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.47-54
    • /
    • 2016
  • In this study, the flexural capacity of fiber reinforced concrete floor slabs were evaluated using main design loads, racking and moving loads. Based on design standards and guidelines, the magnitude and loaded area of each load were determined, and its relationship was assessed. For the application of a single load, flexural capacity should be evaluated in the edge of a floor slab. In addition, the slab with thickness and concrete strength, greater than 180mm and 35MPa, respectively, sufficiently satisfied flexural capacity with a minimum of equivalent flexural strength ratio. The combination of racking loads required the largest equivalent flexural strength ratio to satisfy the flexural capacity of the floor slab. The combination of racking and moving loads showed equivalent flexural strength ratio smaller than the case of combination of racking loads, but larger than the application of single racking or moving loads. The results of this study indicated that the flexure of fiber reinforced concrete floor slabs should be designed using the combination of design loads.

Stability Analysis and Design of Slope Reinforcing Method Using Anchored or Waste Tyre Wall (앵커 또는 폐타이어 벽체를 이용한 사면보강공법의 안정해석 및 설계)

  • 김홍택;강인규
    • Geotechnical Engineering
    • /
    • v.10 no.2
    • /
    • pp.69-84
    • /
    • 1994
  • In the present study, the application of a method of anchored or waste tyre wall in reinforcing the unstable slope is investigated. For design purposes a method of external stability analysis of the reinforced slope, together with a method of internal stability analysis of a wall itself, is presented. In order to predict the passive resistance expected in the anchor or waste tyre Meyerhof's bearing capacity theory is moapaed and experimental results of stress distribution of a pile section under lateral loading is used. Hurray's pull-out teat results are compared with the passive resistances of anchors predicted by the proposed method, and alto the advantages in design are compared with a method of reinforced earth wall with steel strips. Finally a design example of reinforced slope using anchored or caste tyre wall is presented and the overall stability is analyzed in detail by the proposed method of analysis. The efficiency of a method of anchored or waste tyre wall is further analyzed, comparing with a method of changing geometry of the origin리 unstable slope.

  • PDF

Analytical Verification of Seismic Reinforcement Effect of Port Breakwater during Earthquake (지진시 항만 방파제의 내진보강 성능에 관한 해석적 검증)

  • Yihyuk Kwon;Hyeok Seo;Daehyeon Kim
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.657-671
    • /
    • 2023
  • As large-scale earthquakes have occurred in Korea and their aftermath continues to be felt, laws and regulations on seismic design have been emphasized, and in Korea, the seismic design standards have been newly revised after the Gyeongju earthquake. In the revised seismic design standards, a stability review for the destruction of the support activity of the breakwater was newly added. Therefore, in this study, we conducted a stability analysis on the seismic reinforcement method for the study site, and checked the ground acceleration of the subgrade and the displacement of the structure over time. As a result of the stability analysis, the safety factor increased by at least 0.5 and up to 1.7. As a result of the time history analysis, the displacement of the superstructure decreased by up to 290 mm and down to 12 mm in both the shallow and deep sections before and after reinforcement, and the ground acceleration decreased by up to 5.33 m/s and down to 0.31 m/s after reinforcement.

Studying on the Hybrid FRP Stiffener for the Performance Improvement of Strengthened RC Beam (철근콘크리트 보의 성능개선을 위한 Hybrid FRP 보강재 연구)

  • Ahn, Mi-Kyoung;Lee, Sang-Moon;Jung, Woo-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.243-244
    • /
    • 2010
  • Reinforced concrete beam are very diverse materials that are used to bending reinforcement. Recently the case of FRP flexural reinforcement is actively being used is an excellent weight - rigidity. However, use of FRP bending reinforcement in brittleness material properties of concrete in an actual field application causes destruction of detachment and attachment is being considered as a major cause of destruction. For hybrid laminating plates, tensile and three-point bending tests were performed considering various designs and fabricating methods for hybrid FRP plates. Tensile property of each test specimen was investigated and the research parameter of hybrid laminating plates considered here is the combining ratio of fiber to aluminum contents.

  • PDF