• Title/Summary/Keyword: 병진 운동

Search Result 95, Processing Time 0.023 seconds

Visualization of Flow Field of Weis-Fogh Type Water Turbine Using the PIV (PIV를 이용한 Weis-Fogh형 수차의 유동장 가시화)

  • Ro, Ki Deok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.3
    • /
    • pp.191-197
    • /
    • 2017
  • In this study, the visualization of the unsteady flow field of a Weis-Fogh-type water turbine was investigated using particle-image velocimetry. The visualization experiments were performed in a parameter range that provided relatively high-efficiency wing conditions, that is, at a wing opening angle ${\alpha}=40^{\circ}$ and at a velocity ratio of the uniform flow to the moving wing U/V = 1.5~2.5. The flow fields at the opening, translational, and closing stages were investigated for each experimental parameter. In the opening stage, the fluid was drawn in between the wing and wall at a velocity that increased with an increase in the opening angle and velocity ratio. In the translational stage, the fluid on the pressure face of the wing moved in the direction of the wing motion, and the boundary layer at the back face of the wing was the thinnest and had a velocity ratio of 2.0. In the closing stage, the fluid between the wing and wall was jetted at a velocity that increased as the opening angle decreased; however, the velocity was independent of the velocity ratio.

Experimental Study on Sloshing Characteristics of a Ferrofluid in the Spherical Container (구형 용기 내 자성유체의 슬로싱 특성에 관한 실험적 연구)

  • Kim, Dae-Wan;Lee, Moo-Yeon;Seo, Lee-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.5
    • /
    • pp.173-177
    • /
    • 2013
  • This work describes the experimental investigations on sloshing characteristics of water and ferrofluid as working fluids in the spherical container with the horizontal oscillation motion and compared the results obtained by two working fluids. In order to Investigate the sloshing characteristics of the sphere container with the horizontal oscillation, experiments are performed with the magnetic intensities from 0 mT to 50 mT and horizontal oscillation motions from 5 mm to 15 mm. As results, Ferrofluid without magnetic field in the sphere container showed a similar liquid surface movement with water. The resonance point of the ferrofluid in the sphere container happened at higher value than that of the theoretical resonance frequency with the rise of the magnetic field. In addition, the sloshing characteristics of the ferrofluid in the sphere container can be controlled with the resonance frequency with the magnetic intensity and the liquid surface displacement could be also controlled.

A Momentum-Exchange/Fictitious Domain-Lattice Boltzmann Method for Solving Particle Suspensions (부유 입자를 해석하기 위한 운동량 교환/가상영역-격자볼츠만 방법)

  • Jeon, Seok Yun;Yoon, Joon Yong;Kim, Chul Kyu;Shin, Myung Seob
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.6
    • /
    • pp.347-355
    • /
    • 2016
  • This study presents a Lattice Boltzmann Method (LBM) coupled with a momentum-exchange approach/fictitious domain (MEA/FD) method for the simulation of particle suspensions. The method combines the advantages of the LB and the FD methods by using two unrelated meshes, namely, a Eulerian mesh for the flow domain and a Lagrangian mesh for the solid domain. The rigid body conditions are enforced by the momentum-exchange scheme in which the desired value of velocity is imposed directly in the particle inner domain by introducing a pseudo body force to satisfy the constraint of rigid body motion, which is the key idea of a fictitious domain (FD) method. The LB-MEA/FD method has been validated by simulating two different cases, and the results have been compared with those through other methods. The numerical evidence illustrated the capability and robustness of the present method for simulating particle suspensions.

An Efficient Method to Extract the Micro-Motion Parameter of the Missile Using the Time-Frequency Image (시간-주파수 영상을 이용한 효과적인 미사일 미세운동 변수 추출 방법)

  • Choi, In-O;Kim, Si-Ho;Jung, Joo-Ho;Kim, Kyung-Tae;Park, Sang-Hong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.6
    • /
    • pp.557-565
    • /
    • 2016
  • It is very difficult to intercept the missiles because of the small radar cross-section and the high maneuverability. In addition, due to the decoy with the similar motion parameters, additional features other than those of the translation motion parameters need to be developed. In this paper, for the successful recognition of missiles, we propose an efficient method to extract micro-motion parameters and scatterers of the missile engaged in the micro motion. The proposed method extracts motion parameters and scatterers by using the matching score between the modeled micro-Doppler function and the time-frequency binary image as a cost function. Simulation results using a target composed of the point scatterer show the parameters and the scatterers were accurately extracted.

Estimation of Sensitivity Axis Offset of an Accelerometer for Accurate Measurement of the 6 DOF Human Head Motion (인체 머리부 6 자유도 운동 측정의 신뢰성 향상을 위한 가속도계 감도축의 옵셋(offset) 추정)

  • Lee, Jeung-Hoon;Kim, Kwang-Joon;Jang, Han-Kee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.9
    • /
    • pp.905-912
    • /
    • 2008
  • Notion sickness is well known to be caused by long time exposure to the very low frequency motion in the multiple axes of human body Since the vestibular system for the perception of low frequency motion is located in the head, accurate measurement of 6 degree of freedom head motion is of great importance. In this study, the measurement system consisting of a safety helmet and 9 translational accelerometers was constructed for the estimation of 3 translational and 3 rotational motions of human head. Since estimation errors of 3 rotational components can be significantly magnified even by small offset of the sensitivity axis from the geometric center of an accelerometer, accurate measurement of sensitivity axis must be preceded. The method for accurate estimation of the offset was proposed, and the effect of offset on the estimation of angular acceleration was investigated.

Development of Holonomic Drive Technology with Variable Manipulability (조종성이 가변 가능한 홀로노믹 구동 기술 개발)

  • Lee, Ho-Hyoung;Cho, Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.4
    • /
    • pp.471-479
    • /
    • 2010
  • A holonomic drive can provide rotational and translational acceleration simultaneously in any direction. For this reason the holonomic drive technology is very desirable in creating motion for any mobile platform and has many promising mobility applications in the field of robotics and automation where manipulability is critical issue especially when the mobile system is operated in obstacle prone environment. In this paper a pragmatic methodology for realizing a holonomic drive system using multiple servo-casters is presented. The steering and driving of each servo-caster is controlled such that they are coordinated with the motions of other servo-casters in order to realize holonomic motion. This paper also proposes algorithms for varying manipulability as operation situation demands.

Hybrid Dual Quaternion Algorithm For Precise Strapdown Inertial Navigation (정밀 스트랩다운 관성항법을 위한 혼합 이체쿼터니언 알고리즘)

  • Shim, Ju-Young;Lee, Han-Sung;Park, Chan-Gook;Yu, Myeong-Jong;Lee, Hyung-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.7
    • /
    • pp.627-632
    • /
    • 2007
  • Dual quaternion is efficient methodology to express rotation and translation of the vehicle's movements in the unified frame work. Recently, a strapdown inertial navigation algorithm based on dual quaternion was introduced. By comparing and analyzing the classical and dual-quaternion algorithms, this paper proposes a new strapdown inertial navigation algorithm that maintains the accuracy benefit of the dual-quaternion algorithm with considerable computational reduction. Simulation results show the efficiency of the proposed hybrid strapdown navigation algorithm.

Synthesis of an On-Line 5 Degrees of Freedom Error Measurement System for Translational Motion Rigid Bodies (병진운동 강체의 온라인 5자유도 운동오차 측정시스템 설계 및 해석)

  • 김진상;정성종
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.5
    • /
    • pp.93-99
    • /
    • 1998
  • Although laser interferometer measurement system has advantages of measurement range and accuracy, it has some disadvantages when measurement of multi degrees of freedom of motion are required. Because the traditional error measurement methods for geometric errors (two straightness and three angular errors) of a slide of machine tools measures error components one at a time. It may also create an optical path difference and affect the measurement accuracy. In order to identify and compensate for geometric errors of a moving rigid body in real time processes, an on-line error measurement system for simultaneous detection of the five error components of a moving object is required. Using laser alignment technique and some optoelectronic components, an on-line measurement system with 5 degrees of freedom was developed for the geometric error detection in this study Performance verification of the system has been performed on an error generating mechanism. Experimental results show the feasibility of this system for identifying geometric errors of a slide of machine tools.

  • PDF

Control of an Omni-directional Electric Board using Driver Weight Shift (운전자 체중 이동을 이용한 전방향 전동 보드의 제어)

  • Choi, Yong Joon;Ryoo, Jung Rae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.4
    • /
    • pp.149-155
    • /
    • 2016
  • This paper presents a control method of a mecanum wheel-based omni-directional electric board using driver weight shift. Instead of a steering device such as a joystick or a remote controller, 3 degree-of-freedom driving command for translational and rotational motion of the omni-directional electric board is generated from position of center of gravity measured from weight distribution. The weight shifting motion is not only a driving command but also an intuitive motion to overcome inertial forces. The overall control structure is presented with experimental results to prove validity of the proposed method.

Vibration Analysis of a BEBTS(Built-in Eccentric Bearing-Torsional Spring) Type ABTU(Automatic Belt Tension Unit) (편심 베어링 - 비틀림 스프링 내장형 자동벨트 긴장장치의 진동해석)

  • Choe, Yeong-Hyu;An, Yeong-Deok;Jeong, Won-Ji
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.3
    • /
    • pp.95-100
    • /
    • 2002
  • Built-in Eccentric Bearing-Torsional Spring (BEBTS) type Automatic Belt Tension Unit (ABTU) is one of typical belt tension units. The BEBTS type ABTU system frequently experiences torsional vibration about its pivot due to the variation of belt tension. However, it is very difficult to analyze the rotational (or torsional) vibration of the ABTU because the exciting moment varies according to the change of belt tension. To get over this difficulty, in this paper. the ABTU was simplified as 1-DOF translational motion model in the tangential direction. Its equation of motion was derived and solved. The time history and frequency responses were computed and examined for three of BEBTS type ABTUs which are made by different manufacturers but the tame kind.