본 고는 최근 들어 활발하게 연구가 진행중인 병렬 처리 분야 중에서 여러 가지 병렬 프로그래밍 방법에 대한 정의 및 특징을 살펴보고, 대표적인 사례에 대해 요약해본다. 먼저 데이터 병렬성을 이용한 프로그래밍 방법과 대표적인 프로그래밍 언어 HPF에 대해 살펴본 후, 어드레스 공간이 공유되는 공유 메모리/분산공유 메모리 시스템에서의 프로그래밍 방법과 최근 표준화 작업이 진행중인 OpenMP에 대해서 알아본다. 끝으로 어드레스 공간이 공유되지 않는 분산 메모리 시스템에서의 프로그래밍 방법과 표준 메시지 패싱 인터페이스인 MPI에 대해 서술한다.
본 논문에서는 병렬프로그램을 효율적으로 수행하는데 필수적인 부하분산을 위한 기존 알고리즘의 부하분산 오버헤드를 최소화하기 위하여 이 알고리즘의 병렬화 방법을 제시한다. 병렬계산 모델로는 동적으로 변하는 트리구조를 들었으며 이러한 계산은 많은 응용분야에서 찾아볼 수 있다. 부하분산 알고리즘은 통신비용을 정해진 한도 이내로 유지하면서 프로세서간 계산부하를 최대한 균등하게 분산시키고자 시도한다. 이 알고리즘이 메쉬와 하이퍼큐브 구조에서 어떻게 병렬화 될 수 있는가를 상세히 보이고 각각의 경우에 대하여 시간상 복잡도를 분석하여 기존의 알고리즘보다 여러가지 오버헤드가 개선되었음을 증명한다.
동기식 분산 딥러닝 기법은 그래디언트 계산 작업을 다수의 워커가 나누어 병렬 처리함으로써 모델 학습 과정을 효율적으로 단축시킨다. 배치 사이즈는 이터레이션 단위로 처리하는 데이터 개수를 의미하며, 학습 속도 및 학습 모델의 품질에 영향을 미치는 중요한 요소이다. 멀티 GPU 환경에서 작동하는 분산 학습의 경우, 가용 GPU 메모리 용량이 커짐에 따라 선택 가능한 배치 사이즈의 상한이 증가한다. 하지만 배치 사이즈가 학습 속도 및 학습 모델 품질에 미치는 영향은 GPU 활용률, 총 에포크 수, 모델 파라미터 개수 등 다양한 변수에 영향을 받으므로 최적값을 찾기 쉽지 않다. 본 연구는 동기식 분산 딥러닝 환경에서 실험을 통해 최적의 배치 사이즈 선택에 영향을 미치는 주요 요인을 분석한다.
MPI(message passing interface) 기반 PC 클러스터 상에서 병렬분산 GHT(generalized Hough transform)를 모델화하고 시간 분석하여 고속화 구현하였다. 파이프라인 방송(pipelined broadcast) 통신방식과 누산기 배열(accumulator array) 분할 처리정책을 사용함으로써 통신부담을 최대한 줄였고, 전체 처리 과정에 걸쳐 통신과 계산처리를 시간 중첩시켜 구현함으로써 최대한의 속도제고를 하였다. 100 Mbps Ethernet 스위치를 이용하여 MPI 기반 PC 클러스터를 구현하고 제안한 병렬분산 GHT를 실험하여 선형에 가까운 속도 제고율 (speedup)을 확인하였다.
병렬 파일 시스템은 고속의 네트웍으로 여러 대의 컴퓨터들을 서로 연결하여 컴퓨터들 간에 메시지를 주고받으면서 파일을 분산 저장하고 병렬로 읽어오는 방식으로 파일 입출력 장치의 병목현상을 해결한다. 그러나 대부분의 병렬 파일 시스템은 전달하려는 메시지의 특성을 고려하지 않은 프로토콜의 사용으로 성능저하의 문제를 가지고 있다. 이에 따라 본 논문에서 메시지 처리 방법으로 HCM(Hybrid Channel Model)을 제안한다. 본 논문에서 제안하는 HCM은 병렬 파일 시스템에서 전달되는 메시지를 그 특성에 따라 분리해서 별개의 프로토콜을 이용하여 제어 메시지와 파일 데이터 블록을 전송한다. 안정성이 검증된 TCP/IP를 이용하여 구현한 메시지 채널을 통해 제어 메시지를 고속의 데이터 전송이 가능한 VIA를 이용하여 구현한 데이터 채널을 통해 파일 데이터 블록을 각각 분리하여 처리하도록 하고 있다 HCM을 병렬 파일 시스템에 구현하고 실험해본 결과 본 논문에서 제안한 채널 모델이 상당한 성능향상을 보였다.
본 논문에서는 음성과 자연언어의 통합처리를 위한 효과적인 병렬계산모델을 제안한다. 음소모델은 연속 Hidden Markov Model(HMM)에 기반을 둔 문맥종속형 음소를 사용하며, 언어모델은 지식베이스를 기반으로 한다. 또한 지식베이스를 구성하기 위해 계층구조의 semantic network과 병렬 marker-passing을 추론 메카니즘으로 쓰는 memory-based parsing 기술을 사용한다. 본 연구의 병렬 음성인식 알고리즘은 분산메모리 MIMD(Multiple Instruction Multiple Data) 구조의 다중 Transputer 시스템을 이용하여 구현되었다. 실험결과, 본 연구의 지식베이스 기반 음성인식 시스템의 인식률이 word network 기반 음성인식 시스템보다 높게 나타났으며 code-phoneme 통계정보를 활용하여 인식성능의 향상도 얻을 수 있었다. 또한, 성능향상도(speedup) 관련 실험들을 통하여 병렬 음성인식 시스템의 실시간 구현 가능성을 확인하였다.
소셜 네트워크와 웹 2.0의 등장은 거대한 데이터 홍수를 초래하였다. 이 와 관련된 다양한 기술들이 연구 개발되고 있으며 특히 동시에 요구되는 data를 처리하기위한 여러 기술이 등장하였다. 본 연구에서는 다양한 BigData 분산처리 기술들중에 가장 각광 받고 있는 Hadoop이라는 기술을 연구 분석할 것이다. 국내에 아직 많은 사용자가 없어 그 존재감이 많이 없다가 요즘 들어 상승하고 있는 추세이며 이러한 Hadoop의 흐름속에 data의 분산과 병렬처리에서 발생되는 문제점을 분석하고 이를 해결할수 있는 모델을 제시하여 새로운 모델의 하둡으로 기본적인 핵심기술인 federation을 쉽게 할 수 있고 향후 이 구조의 기능과 상세모델을 연구하고 구현하여 제안된 연구 구조의 우수성을 입증하고자 한다.
최근 컴퓨터와 인터넷 이용의 확산, 스마트폰을 포함한 스마트 기기의 보급과 소셜 네트워크 이용의 확대, 위치 기반의 다양한 서비스 확대 등으로 처리해야 할 데이터 크기가 증가하는 추세이다. 이에 따라 대용량 데이터에 대한 처리가 큰 이슈로 떠오르고 있다. 그로 인해 대용량 데이터 처리를 위한 큰 규모의 분산 컴퓨팅 환경을 지원하는 프레임워크인 하둡이 개발되었으며 많은 기업에서 이를 활용하고 있는 추세이다. 하지만 대용량 데이터 중 영상, 의료, 센서 데이터 등 다차원 데이터 처리에 관한 연구는 미비한 상태이다. 기존의 다차원 데이터 처리를 위해 다양한 다차원 인덱스가 제안되었지만, 대용량 다차원 데이터 처리는 단일머신에서는 비효율적인 단점이 있다. 본 논문에서는 다차원 인덱스 기법인 그리드 파일을 하둡의 분산 병렬 처리 모델인 맵리듀스를 기반으로 생성하는 기법을 제안한다. 또한 앞서 생성된 그리드 파일을 가지고 맵리듀스를 이용한 질의처리 방법을 제안 한다. 이로 인해 단일머신에서의 그리드 파일 생성을 병렬처리 함으로써 생성 시간을 단축시키고 질의 처리 또한 맵리듀스를 이용하여 병렬 처리 함으로써 질의 시간 단축을 예상한다.
본 논문은 다중 이동 에이전트 시스템을 이용한 웹 지리 정보 시스템 모델을 제안한다. 방대한 지리 정보를 분산 병렬처리하기 위해서 호스트간을 이주하고 네트워크 환경에서 효율적으로 수행하는 이동 에이전트를 사용한다. 제안하는 모델은 사용자와 상호작용하고 에이전트를 생성하여 이주시키며 웹 브라우저에 플러그 인 되는 HAP(home agent platform)과 GIS 서버에서 지리객체를 검색하는 iMAP(internet mobile agent)으로 구성된다. 성능 평가는 클라이언트/서버 모델과 이동 에이전트 모델간의 성능 비교를 통해서 보여준다.
본 논문에서는 Edge computing 환경에서 다수의 노드들로 구성된 네트워크의 디바이스를 효율적으로 관리하기 위한 방법을 제안한다. 기존의 클라이언트-서버 모델은 모든 데이터와 그에 대한 요청을 중심 서버에서 처리하기 때문에, 다수의 노드로부터 생성된 많은 양의 데이터를 처리하는 데 빠른 응답속도를 보장하지 못한다. Edge computing은 분담을 통해 네트워크의 부담을 줄일 수 있는 IoT 네트워크에 적합한 방법으로, 데이터를 전송하고 받는 과정에서 네트워크의 대역폭을 사용하는 대신 서로 연결된 노드들이 협력해서 데이터를 처리하고, 또한 네트워크 말단에서의 데이터 처리가 허용되어 데이터 센터의 부담을 줄일 수 있다. 여러병렬 기계학습 모델 중 본 연구에서는 Stale Synchronous Parallel(SSP) 모델을 이용하여 Edge 노드에서 분산기계 학습에 적용하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.