Parallelization of A Load balancing Algorithm

for Parallel Computations
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Abstract

In this paper, we propose an approach to parallelize a load balancing algorithm that was shown to be very

effective in distributing workload for parallel computations. Load balancing algorithms are required in executing

parallel program efficiently. As a parallel computation model, we used dynamically growing tree structure that can

be found in many application problems. The load balancing algorithm tries to balance the workload among
processors while keeping the communication cost under certain limit. We show how the load balancing algorithm is

effectively parallelized on mesh and hypercube interconnection networks, and analyzed the time complexity for each

case to show that parallel algorithm actually reduced the various overhead.
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I. Introduction

Load balancing is the activity of distributing or
redistributing the computational load among the
processors of a multiprocessor system in order to
achieve high performance. In multiprocessor computer
systems load balancing
should also take into consideration the inter processor

with distributed memory,

communication cost that arises when a computation in
a processor needs data located in another processor’'s
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memory.
In this paper, we propose an approach to parallelize a
load balancing algorithm that was shown to be very
effective in distributing workload while keeping
communication cost under a certain limit.I3] The
parallel computation model used for the above load
algorithm is

balancing dynamically growing tree

structure that can be found frequently in many
application problems. In this model, the computation
structure changes dynamically as the computation
hence ordinary static load balancing
cannot be

structure can be described with task interaction graph

proceeds,

approaches applied. The computation
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that represents the amount of computational workload
and the communication needed between the tasks. The
communication pattern also changes with the change of
computation structure, and the problem of finding the
allocation of tasks and communication path becomes
extremely complicated. In this case, static partitioning
and allocation of task graph is not enough to achieve
high performance in parallel computers.

To this problem, we present a parallel load balancing
algorithm based on the approach previously published.
The approach was shown to be very effective in
distributing workload among processors, but it is
basically a serial algorithm so that a considerable
overhead can incur when the number of tasks is large.
We present a parallelized load balancing algorithm that
can substantially reduce the overhead by having all the
the redistribution of
workload. The algorithm is shown to be implemented
on mesh and hypercube that are most widely used
interconnection networks for parallel computers.

processors work on finding

II. Related work

Most of the load balancing and task allocation
algorithms can be classified as centralized or
distributed by the way the workload information is
gathered and load balancing dicision is made. In this
section, we survey some of them.

Legrand, Renard and Robert [4] proposed a heuristic
for mapping iterative algorithms onto heterogeneous
clusters. The application data is partitioned over the
processors, which are arranged along a virtual ring. At
each iteration, independent calculations are carried out
in parallel, and some communications take place
between consecutive processors in the ring. They
established a complexity result that assesses the
difficulty of the problem.

Genaud, Giersch and Vivien [2] presented solutions to
statically load balance scatter operations in parallel
codes run on grids. Their strategy is based on the
modification of the data distributions used in scatter
operations. They used seismic tomography application
to illustrate the benefits of their scheme.

These load balancing methods are based on static
strategies. There are also many papers which propose
load balancing algorithms for dynamically changing
workload. Pilkington and Baden [5] discussed a
partitioning  strategy for non-uniform
computations running on distributed memory MIMD

scientific

parallel computers. They considered the case of a
dynamic workload distributed on a uniform mesh, and
compared their method against other two methods. It
was shown that their method is superior to the other
two in rendering balanced workloads.

A parallel method for the dynamic partitioning of
unstructured meshes was developed by Walshaw and
Cross [7]. The method introduced a new iterative
optimization technique known as relative gain
optimization. Experiments indicated that the algorithm
provided partitions of an equivalent or higher quality to
static rapidly. The

algorithm also resulted in only a small fraction of the

partitioners and much more
amount of data migration compared to the static
partitioners.

Both static and dynamic
centralized or decentralized. In centralized schemes,
by a central
processor. In decentralized schemes, each processor has

schemes are either

load balancing decisions are made

to make its own decisions about load balancing after
collecting the necessary status information from only a
subset of all the processors. It also takes less time to
collect the information from the subset of processors,
and it is not necessary to broadcast the results of load
balancing decisions. Centralized schemes however, have
the advantage of making more accurate decisions over
decentralized schemes.

In the approach proposed in this paper, global
workload information is used to make the decision on
the redistribution of workload since it is more accurate
than local workload information used by decentralized
methods. However, by making all the processors work
on making load balancing decision, we can obtain the
quicker solution. In addition to that, the results of the
decision need not be broadcast to other processors.

III. Problem Formulation and Proposed
Approach

The detailed formulation of the problem is given in
{3, and we briefly it here. In the
dynamically growing tree structure, the problem is
assigning the nodes computations to
processors. This is a very difficult problem since we
can not predict the future growth of the tree. To make
the problem more tractable, we

summarize

representing

synchronize the
computation on all the processors at each level i of

the tree. The tasks at level ¢ in the tree are generated
and assigned to processors at the same time. The child
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task should be migrated from the processor where it
was produced to the processor where it is to be
executed. After the execution of the child task is done,
the result should be sent back to the parent task.
Then our problem is one of distributing the child tasks
to processors, so that computational workload is
balanced among

communication cost is minimized. To formulate the

processors and the maximum

execution time of tasks at level 7, we introduce the

following notations :

G=(V,E) : processor graph where V is the set of
processor nodes an E the set of communication
links

St set of tasks generated at level 7

E, : execution time of task a

M, : cost of sending the message generated by
task a to an adjacent processor

B, : cost of sending task a to an adjacent
processor

d(p, py) : communication distance between

processors p; and p; in G

f:S—-V : f(a) is the processor where task a
was
generated
g:5—-V : task assignment function; g(a) is
the

processor where task a is executed
h:V—>2°

tasks assigned to processor p

:inverse of g, h(p) is the set of

Then the total execution time of tasks at level 7 is
given as follows.

Ti=max ey (3 E,)

o)
+ max ,.g (d(f(2), g(2) ))(B,+ M,)

The first term represents the sum of computational
workloads of the tasks assigned to processor p and the
second term represents the inter-task communication
cost. Then our load balancing problem can be stated
: Given G, S, f determine g (and hence &)
such that T; is minimized.

In the approach proposed in [3], inter-task
communication cost is treated as a constraint, and an
allocation of tasks
maximum computational cost while satisfying the

as follows

is found that minimizes the

constraint. With this strategy, the formulation of our
load balancing problem is modified as follows :

Find f (and hence ) such that max ,cy2, seh(n) E,

is minimized with the constraint that

max ,o,d(f(a), g(a) (B, +M)<C ., where C,,,
is the acceptable limit for inter-task communication
cost. When the execution time of each task E, and the

number of processors N are given, C,,, is set to

FE ..
—Z-II{/—J— so that the communication cost cannot

exceed the average computational cost per processor.
In the heuristic algorithm, first a label £, is assigned

to each task @ that indicates the maximum distance it
can migrate from its currently assigned processor.

Initially, £,= | —Sm— | that

B+ M, inversely

is, £, is

proportional to the amount of communication required
for the task. Each time a task needs to move by

distance d during a balancing step, ¢, decreases by d
and when £, becomes zero it remains assigned to its

current location.

For balancing the computational load, a recursive
procedure is used, that is, first balancing load between
two halves of processors and then applying the
procedure recursively to the two halves. In order to
balance the workload between two halves, the tasks in

each half are ordered in non-increasing order of ¢,

values. Tasks are moved from overloaded half to
under-loaded half in the above order. During the first
iteration, each processor does the same computation,
namely attempt to balance the load between two
halves of processors using the proposed heuristic.
During the second iteration, all the processors in a half
do the same computation, namely attempt to balance
the load between two quadrants of that half. Thus this
process proceeds up to logN (assuming N to be a

power of 2) iterations. In the next section, we
describe how the above approach can be efficiently

parallelized and analyze its time complexity.
IV.A Parallel Load Balancing Algorithm

Our parallel load balancing algorithm will be
described based on hypercube interconnection network
first, and the modification for mesh will be discussed
in the following algorithm, the
processors initially generate tokens or packets one for

section. In the
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CE,t, C,> for each task a to be allocated where

E : Execution time of task a

a
¢, ' The maximum distance task @ can migrate
from its current location
C, : Index of the processor to which task a is
currently assigned
Initially, C, is set to the index of the processor
where task @ was generated. First, the packets are
evenly distributed among the processors. This token
distribution step is important for distributing among
the processors the workload associated with the
remaining steps of the load balancing algorithm. We
log N

iteration load balancing is performed between two

perform iterations where during the ¢-th

halves of a sub-cube of dimension log/NV—i; we call
In each iteration, the
(a) sort the
whose new processor

each such half a ‘‘segment’’.
following major steps are performed
packets such that all packets
locations belong to the same segment reside in a set
of contiguous processors; within the same segment
they are in the order in which the corresponding tasks
will be considered for migration, (b) selection of tasks
(i.e. packets) At the end of the
algorithm, a processor that holds a packet informs the
processor in which the task was generated about its
new location. The actual migration of tasks happens
only after the load balancing algorithm is completed.

for migration.

Below we give a formal description of our algorithm.
In the description, we use parallel algorithms for
well-known computational problems such as segmented
scan (prefix), summing, sorting etc. and packet-routing
problems such as token distribution, broadcasting etc..
We will refer to the literature for efficient algorithms
for these problems.

Algorithm Load balance;
(a) Each processor creates for each task a it has, a

G) M,, size of

the task, (ii) {,, maximum distance it can migrate from

packet with the following information :

its currently assigned location, (i) f(a), index of
processor where it was generated and (iv) &, index

of the segment containing the processor the task is
currently assigned to; this is initially set to the most
significant bit of f(a).

(b) Distribute the packets evenly among the
processors using procedure TokenDistribution.

(c) Perform logN where in the [-th

iteration, call procedure AdjustDistribution}(l).

iterations

(d) Now each processor may contain packets whose
(), fields (that indicate final locations of the tasks) are
different from their f(a) fields (source locations); we

“‘mark’’ such packets. Now these marked packets need
to be sent to the processors where the corresponding
tasks were generated. This is a many-to-many routing
problem for which efficient solutions exist when two
packets destined for the same processor are allowed to
be combined. We call procedure InformSource to
perform the above task.

end Load balance

Procedure TokenDistribution;

1. Each processor P ; numbers its packets from 1 to
m ; where m ; is the number of packets it has.

2. Determine M ,, = max gm;

3. Broadcast M ., to other processors

4, Let k=0

5. For j=1to M, do steps 6-10.

6. Broadcast & to other processors

7. Each P, sets a; =1 if it has a packet

indexed 7, else sets a, = 0.

8. Compute prefix on

(a fimgN-1e b,-z,=0N_,); b /s are obtained.

9. Each P, sends its j-th packet to the
processor indexed (k+ b;—1) mod N

10. Py_, sets k= (by_;+k) mod N.

end TokenDistribution

Procedure AdjustDistribution (/)
1. Sort packets according to lexicographical order of
the fields < Q ,, ¢, M ,> where Q,and M,

are in increasing order and ¢, is in decreasing
order. For packet with equal values of @ , ¢ ,and
M ,, their relative order after packing can be

arbitrary. For this, we use a parallel sorting
scheme for hypercubes.
2. Each processor numbers its packets from 1 up to

l_—MJ\? | Let PS; be the set of contiguous

processors that have packets a with @ ,=/,

(0<j<2'—1). Assume these sets are disjoint.
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3. Concurrently compute workload difference on each
processor. Now each processor in P ; knows Aj,
half the load difference between two halves of its
segment namely P;and P, )i let g;=1if
the load in PS; is greater is greater than the
load in PS;, (1) and A ;> ¢, 0 otherwise. Let
PS’,’-EPS ; be the set of contiguous processors
that have packets @ with @ ,=jand ¢,=k,
where 0<j<2'"! and 0<k<logN .

4, Compute prefix on M ,'s to obtain M’;f, for all
0<j<2'—1 and 1<k<logN. Here M* is the
sum of M ,'s of packets b with ¢,= 4% and
which exist in those processors of PS* indexed
smaller than the processor containing packet a

and of those packets indexed no greater than a

in the same processor containing @ .

5. Mark packets to be migrated to the other halves
of their segment.

6. Each processor does the following for each

marked packet a it has: complement the /th
most significant bit of @ , and decrease ¢, .

7. if #log N then each processor updates the
segment number of each packet a that it has, by
concatenating the (/4 1)-th most significant bit
of Ala) to the right of @, .

end AdjustDistribution;

Procedure InformSource;

1. Sort the marked packets according to their f(a)
fields using a parallel sorting scheme for
hypercubes. For 0 < j < N—1$ let 7 be the
set of contiguous processors holding packet a
with f(a) =j

2. Compute prefix on these packets where the
associative operation is defined to be merging of

two packets with the same destination into one
packet. After this step, the least indexed

processor in 7; keeps the merged packet while
others in 7} discard their outputs. Now we have

at most one packet destined for a processor but a
processor may have more than one such packet

to send. Each processor P that has at least one

such packet, indexes the packets (in the order of

their destinations) from 1 to 7% where

13m;s%—

3. for j=1 to L]\{ do the following :

Each processor routes its j-th packet if it exists

to its destination.
end InformSource

Time complexity analysis :
Procedure TokenDistribution takes O(M _, logN)
time derived as follows : Step 1 takes O(M .. ) time

and steps 2 and 3 take O(logN) time; steps 6, 8 and
9 all take O(logN) time for each iteration of step 5.

Computing workload difference takes O(—%—-i— log N)

time as the operations performed in it are summing
and segmented scan. By the same reasoning, selecting

packets to be migrated also takes 0(%+ log N)

time.
Now the complexity of procedure AdjustDistribution
is analyzed as follows : step 1 takes T (M,N) time

which is the time to sort M items on N processors
with approximately equal number of items (in fact

0(%) items) per processor. Step 2 takes O(%)
time and each of the steps 3, 4 and 5 takes
0(—%— + log N) time; steps 6 and 7 take O(-%)
time. Hence the complexity of AdjustDistribution is
O(TS(M,N)+—%~ + log N) time. When M<N we

can use odd-even merge sort [1] to sort the packets in
O(log (N) time. When M)N, M packets can be

sorted in O(MOA‘?M) time on a hypercube using the

algorithm given in [1].
The complexity of procedure InformSource is derived

next. Step 1 takes (T (M ,N)) time where M is
the number of marked packets; note that the number

of marked packets per processor is at most %
Hence T (M ,N)=0(logN) when M<N and equal

to O(—A%)VgM—) otherwise. Step 2 takes

O(-%+logN) time and step 3 takes 0(% log N)
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Hence the

AT (M,N)+ Jl]\if log N).

Now we are ready to analyze the complexity of our
O(M 1ax)
time and step (b) takes O(M .. logN) time. Step (¢)

time. complexity of InformSource is

load balancing algorithm. Step (a) takes

M
takes O(T (M, N)+ N+10gN) time for each of

log N iterations. Thus when M<AN, the algorithm has

complexity O(M oy log N+ log SN+ ‘% logN)  When

M> N, the algorithm has complexity

O(M o tog N+ MBI 105 e Mrog ) i time

complexity is much lower than O(N+ Mlog N) which
was given in [3]. The improvement is substantial
especially when the number of processors and the
number ¢f tasks are large.

V. Mesh Network

Our parallel load Dbalancing algorithm can be
implemented on a mesh with only a few changes. The
workload is balanced between left and right halves of
processors, then between upper and lower quadrants of
processors and so on. We need to go through log N
steps as in a hypercube. Other parts of the algorithm
remain unchanged. For the analysis of time complexity
of our load balancing algorithm on a mesh, we first
consider parallel algorithms for well-known
computational and routing problems used in our load
balancing algorithm and their time complexities on a
mesh. The number of processors is assumed to be N.
Also we assume that the processors in the mesh are
ordered in a snake-like row major order.

Time complexity analysis for a mesh :

Broadcasting a value to all the N processors by a

processor takes (Y N) time. Prefix computation of M

segmented inputs with approximately j; inputs per

M,
processor takes ( N +V'N) time [1]. Finding the

maximura or sum of A values and storing it in some
M
processor also takes o N +m time when there are

N
approximately g inputs per processor. Sorting N

numbers (with one in each processor) takes

O(Y Nlog N) time using shearsort. [1]
Now we analyze the time complexity of our load

balancing algorithm as follows. Procedure

TokenDistribution takes O(M max\/T\’) time derived
the same way as for a hypercube. Computing workload
difference and selecting packets to be migrated takes

M
K N +m time. The complexity of procedure
AdjustDistribution is analyzed as follows @ step 1
takes T (M,N) time which is the time to sort M

items on NN processors with approximately equal

number of items per processor. Sorting on a mesh
M

takes VN 10gN) time. Step 2 takes O( N) time
M

and each of the steps 3, 4 and 5 takes O N +V N

. o4y .
time; steps 6 and 7 take N/ time. Hence the

complexity of AdjustDistribution s

T M N+ VR e
The complexity of procedure InformSource is derived

next. Step 1 takes O(T (M ,N)) time where M is
the number of marked packets; note that the number

M

of marked packets per processor is at most .

T(M ,N)= O(—\/A% log N) takes

Step 2

M
O(J]l\il""m time and step 3 takes o m) time.

Hence the  complexity of InformSource is

o(T (b1, + L)

Now we are ready to analyze the complexity of our

load balancing algorithm for a mesh. Step (a) takes
O(M ) time and step (b) takes O(M V) time.

Step (c) takes O(Ts(M’N)"'_%'*'\/TV) time for each

of logN iterations. The algorithm has complexity

2
O(M iV N+ JL\/TV log 2N+ JL\/TV )

VI. Conclusions

In this paper, we proposed an approach to parallelize
a load balancing algorithm that was shown to be very
effective in

distributing workload while keeping

communication cost under a certain limit.[3] The
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parallel computation model used for the load balancing
algorithm is dynamically growing tree structure that
can be found frequently in many application problems.
We formulated the objective function which includes
both computation cost and communication cost between
tasks. The parallel load balancing algorithm we
proposed, can substantially reduce the load balancing
overhead compared to the previous approach.[3] This
goal was achieved by having all the processors
cooperate to find the new distribution of the workload
and communication path to be used. The algorithm
was described based on hypercube and mesh
interconnection networks, and its time complexity was
analyzed for each case.

Our future work will be concerned with the more
difficult task of developing an efficient load balancing
algorithm which can be applied to arbitrary task
graphs where communication can take place between
any pair of tasks. Especially, we are interested in
developing load balancing algorithms which are useful

for massively parallel architectures.
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