Journal of the Computational Structural Engineering Institute of Korea
/
v.32
no.1
/
pp.37-44
/
2019
A bond-based peridynamic model has been reported dynamic fracture characteristic of brittle materials through a simple constitutive model. In the model, each bond is assumed to be a simple spring operating independently. As a result, this simple bond interaction modeling restricts the material behavior having a fixed Poisson's ratio of 1/4 and not being capable of expressing shear deformation. We consider a state-based peridynamics as a generalized peridynamic model. Constitutive models in the state-based peridynamics are corresponding to those in continuum theory. In state-based peridynamics, thus, the response of a material particle depends collectively on deformation of all bonds connected to other particles. So, a state-based peridynamic theory can represent the volume and shear changes of the material. In this paper, the perfect plasticity is considered to express plastic deformation of material by the state-based peridynamic constitutive model with perfect plastic flow rule. The elastic-plastic behavior of the material is verified through the stress-strain curves of the flat plate example. Furthermore, we simulate the high-speed impact on 3D granite model with a nonlocal contact modeling. It is observed that the damage patterns obtained by peridynamics are similar to experimental observations.
Brittle materials such as rocks and concretes exhibit large strain-rate dependency under dynamic loading conditions. This means that the mechanical properties of such materials can significantly be varied according to load velocity. Thus, the strain-rate dependency is recognized as one of the most important considerations in solving problems of blast engineering or rock dynamics. Unfortunately, however, studies for characterizing the dynamic properties of domestic rocks and other brittle materials are still insufficient in the country. In this study, dynamic tensile tests were conducted using the Hopkinson pressure bar apparatus to characterize the dynamic properties of Geochang granite and high-strength concrete specimens. The dynamic Brazilian disc test, which is suggested by ISRM, and the spalling method were applied. In general, the latter is believed to have some advantages in experiments under high-strain rate deformation. It was found from the tests that there were no significant difference between the dynamic tensile strengths obtained from the two different test methods for the two materials given. However, this was not the expected result before the tests. Actually, authors expected that there be some differences between them. Hence, it is thought that further investigations are needed to clarify this results.
To better understand the fundamental problems of the true micro-damage in medium-grained granite under uniaxial compressive stress, micro-damage localization, initiation and propagation have been observed in a great detail in contact portion of two grains such as quartz and feldspar. For this purpose, new experimental system allowing us to observe the micro-damaging process continuously was developed. Earlier studies used the specimens of unloaded state and it is difficult to visualize stress-induced microcracks under unloading state. Thus, direct observation under loading state is very important for understanding the true micro-damage process. The results explain well the mechanism of micro-damage at two grains, and mechanics of the micro-damage is clarified well by Hertzian fracture mechanics.
In the eastern part of the Euiseong Basin acidic~intermediate volcanic rocks widely distribute on the Cretaceous sedimentary basement. Coeval granitic rocks and dyke rocks intruded into the volcanic rocks. Volcanic stratigraphy of study area are andesite lava, dacitic lapilli tuff, dacitic flow-banded lava, rhyolitic bedded tuff, rhyolitic massive tuff, dacitic massive lava, rhyolitlc welded tuff occur from the lower to the upper strata. $SiO_2$ content of the volcanic rocks range from 51 to 74 wt.%. With the increase of $SiO_2$, the contents of $TiO_2$, $Al_2$$O_3$, MgO, FeOT MnO, CaO, $P_2$$O_{5}$ decrease but those of $K_2$O increase. The contents of $Na_2$O show dispersive variation. This trend is quite sim-ilar to the major oxide variation in the volcanic rocks from the Yucheon sub-basin. The geochemical natures indicate that the volcanic rocks in the study area are discriminated to the island-arc type high K to medium K calc-alkaline rocks. The compositional variation of the volcanic rocks can be explained by the plagioclase fractionation of the volcanic magmas originated from similar source materials. The volcanic stratigraphy seems to have formed by at least two eruptive sequences of andesitic to rhyolitic and dacitic to rhyolitic magmas which underwent crystallization differentiation.
The study area, located in Sinam-ri, Ulsan, in the southeastern part of the Korean Peninsula, is mainly composed of hornblende granite (ca. 65 Ma). Fracturing and reactivation of a fault striking ENE-WSW was strongly controlled by the intrusion of a mafic dyke (ca. 44 Ma), which behaves as a discontinuity in the mechanically homogeneous pluton, increasing the instability of the basement in this area. A geometric and kinematic study undertaken to interpret the faults and fractures was performed in a trench excavated almost perpendicular to the orientation of the dyke. The analysis of structural elements, such as dykes, veins, and faults, is used to infer the deformation history and to determine the paleostress orientations at the time of formation of the structures. The deformation history established based on this analysis is as follows: (1) NNE-SSW, E-W, ENE-WSW, and NE-SW trending fractures had already developed in the pluton before dyke intrusion; (2) felsic dykes intruded under conditions of σHmax oriented N-S and σHmin oriented E-W; (3) mafic dykes intruded under conditions of σHmax oriented E-W and σHmin oriented N-S; (4) dextral reactivation of the main fault associated with the development of hydrothermal quartz veins under conditions of σHmax oriented E-W and σHmin oriented N-S; (5) sinistral reactivation of the main fault and high-angle normal faults under conditions of σHmax oriented NE-SW and σHmin oriented NW-SE; and (6) dextral reactivation of the main fault and NE-SW low-angle reverse faults under conditions of σHmax oriented NW-SE and σHmin oriented NE-SW. These results are consistent with the tectonic history of the Pohang-Ulsan block in the southeastern part of the Korean Peninsula, and indicates the tectonic deformation of the southern area of the Ulsan fault bounded by Yangsan fault was analogous to that of the Pohang-Ulsan area from the Cenozoic. This work greatly aids the selection of sites for critical facilities to prevent potential earthquake hazards in this area.
The Gilan area in the central-northern part of Uiseong Block of Cretaceous Gyeongsang Basin is composed of Precambrian metamorphic rocks, Triassic Cheongsong granite, Early Cretaceous Hayans Group, and Late Cretaceous-Paleocene igneous rocks. In this area, the faults of various directions are developed: Oksan fault of $NS{\sim}NNW$ trend, Gilan fault of NW trend, Hwanghaksan fault of WNW trend, and Imbongsan fault of EW trend. Several fracture sets with various geometric indicators, which determine their relative timing (sequence and coexistence relationships) and shear sense, we well observed in the Cheongsong granite, the basement of Gyeongsang Basin. The aim of this study is to determine the development sequence of extension fractures and the movement sense of shear fractures in the Gitan area on the basis of detailed analysis of their geometric indicators (connection, termination, intersection patterns, and cross-cutting relations). This study suggests that the fracture system of the Gilan area was formed at least through seven different fracturing events, named as Pre-Dn to Dn +5 phases. The orientations of fracture sets show (W) NW, NNW, NNE, EW, NE in descending order of frequency. The orientation and frequency patterns are concordant with those of faults around and in the Gilan area on a geological map scale. The development sequence and movement sense of fracture sets are summarized as follows. (1) Pre-Dn phase: extension fracturing event of $NS{\sim}NNW$ and/or $WNW{\sim}ENE$ trend. The joint sets of $NS{\sim}NNW$ trend and of $WNW{\sim}ENE$ trend underwent the reactivation histories of sinistral ${\rightarrow}$dextral${\rightarrow}$sinistral shearing and of (dextral${\rightarrow}$) sinistral shearing with the change of stress field afterward, respectively. (2) Dn phase: that of NW trend. The joint set experienced the reactivations of sinistral${\rightarrow}$dextral shearing. (3) Dn + 1 phase: that of $NNE{\sim}NE$ trend. The joint set was reactivated as a sinistral shear fracture afterward. (4) Dn +2 phase: that of $ENE{\sim}EW$ trend. (5) Dn +3 phase: that of $WNW{\sim}NW$ trend. (6) Dn+4 phase: that of NNW trend. The joint set underwent a dextral shearing after this. (7) The last Dn +5 phase: that of NNE trend.
The Miwon-Boeun area in the central and northern part of Okcheon metamorphic zone, Korea, is composed of Okcheon Supergroup and Mesozoic Cheongju and Boeun granitoids which intruded it. The Okcheon Supergroup consists mainly of quartzite (Midongsan Formation), meta-calcareous rocks (Daehyangsan Formation, Hwajeonri Formation), meta-psammitic rocks (Unkyori Formation), meta-politic rocks (Munjuri Formation), meta-conglomeratic rocks (Hwanggangni Formation) in the study area, showing a zonal distribution of NE trend. Its' general trend is locally changed into NS to EW trend in and around high-angle fault of NS or NW trend. This study focused on deformation history of the Okcheon Supergroup, suggesting that the geological structure was formed at least by four phases of deformation. (1) The first phase of deformation occurred under ductile shear deformation of top-to-the southeast movement, forming sheath fold or A-type fold, asymmetric isoclinal fold, NW-SE trending stretching lineation. (2) The second phase of deformation took place under compression of NW-SE direction, forming subhorizontal, tight upright fold of M trend in the earlier phase, and formed semi-brittle thrust fault (Guryongsan Thrust Fault) of top-to-the southeast movement and associated snake-head fold in the later phase. (3) The third phase of deformation formed subhorizontal, open recumbent fold through gravitational or extensional collapses which might be generated from crustal thickening and gravitational instability. (4) The fourth phase of deformation formed moderately plunging, steeply inclined kink fold related to high-angle faulting, being closely connected with the local change of NE-trending regional foliation into NS to EW direction of strike in the vicinity of the high-angle fault.
The Permo-Triassic Songrim orogeny in the Korean peninsula was a major tectonic event involving complicated continental collisions at the eastern margin of Eurasia. Based on the previous studies on the metamorphic and deformations features of the Songrim orogeny, this paper presents metamorphic and structural characteristics and timing of the Songrim orogeny in the Taebaeksan basin, and discuss about correlation of the tectono-metamorphic evolution of the Taebaeksan basin with the Okcheon basin and the Imjingang belt with a combined analysis of bulk crustal shortening direction, metamorphic P-T and T-t (time) paths. The metapelites in the Pyeongan Supergroup in the northeastern margin of the Taebaeksan basin have experienced lower-temperature/medium-pressure (LT/MP) regional metamorphism followed by high-temperature contact metamorphism due to the Jurassic granite intrusion. The earlier LT/MP regional metamorphism produced two loops of clockwise P-T-d (deformation) paths combined with four deformation events ($D_1-D_4$). The first loop concomitant with $D_1$ and $D_2$ occurred at $400-500^{\circ}C$, 1.5-3.0 kbar, and related with growth of syn-$D_1$ chloritoid and andalusite, post-$D_1$ margarite, Ca-rich syn-$D_2$ or post-$D_2$ plagioclase. The second loop accompanying $D_3$ and $D_4$ occurred at $520-580^{\circ}C$, 2.0-6.0 kbar, and associated with the growth of syn-$D_3$ garnet and staurolite, and syn-$D_4$ and/or post-$D_4$ andalusite porphyroblasts. Furthermore the syn-$D_1$ chloritoid and andalusite porphyroblasts grew during E-W bulk crustal shortening, whereas the syn-$D_3$ garnet and staurolite, and the syn-$D_4$ and/or post-$D_4$ andalusite porphyroblasts have grown under N-S bulk crustal shortening. The similarity in the characteristics and timing of the metamorphism and bulk crustal shortening directions between the Okcheon and Imjingang belts suggest that the peak metamorphic conditions tend to increase toward the western part (Imjingang belt and southwestern part of the Gyeonggi Massif) from the eastern part (Taebaeksan basin). The E-W bulk crustal shortening influenced the eastern part of the Okcheon belt, whereas the N-S bulk crustal shortening resulted in strong deformation in the Imjingang and Okcheon belts. Consequently, the Permo-Triassic Songrim orogeny in the Korean peninsula is probably not only related to collision of the North and South China blocks, but also to the amalgamation of terrane fragments at the eastern Eurasia margin (e.g., collision of the Sino-Korean continent and the Hida-Oki terrane).
The Kyemyeongsan area of Chungju in the NE part of the Ogcheon metamorphic zone, Koera, consists mainly of the Ogcheon Supergroup(Taehyangsan Quartzite, Hyangsanri Dolomite and Kyemyeogsan Formation) and the MeSozoic Chungju granite. The Kyemyeongsan Formation is composed mainly of metamorphic rocks of various grades derived from conglomeratic, basic, acidic, pelitic and psammitic rocks. The basic and acidic rocks show alternated or interfingered appearence, indicating that they were derived form bimodal type of magmatism in rift environment. Conglomeratic rocks overlie acidic volcanic rocks in geneal, but are underlain by both acidic plutonic and volcanic rocks. This indicaties that the acidic magmatism before the formation of conglomeratic rocks was different from that during or after the formation of conglomeratic rocks in its occurrence mode. The geological structure of the Ogcheon metamorphic zone in the Kyemyeongsan area, Chungju was formed at least by three phases of deormation. The first phase deformation(D1) formed a regional-scale sheath-type fold(F1) closed into the east. Its axial phane(S1) strikes NNW to NW and dips WSW to SW. The stetching lineation(L1), related to the sheath-type fold, plunges westward. The second phase deformation (D2) formed asymmetric fold(F2) of ESE-to SE-vergence with NNE to NE striking axial plane(S2) and $20~45^{\circ}/210~230^{\circ}$ plunging axis(L2). The F2 fold reoriented the original westward plunging L1 into northwestward plunging L1 in its lower limb(overturned limb). The third phase of deformation(D3) was recognized as chevron-type fold(F3) with $45^{\circ}/265$^{\circ}$ plunging axis. The F3 fold was formed by the compression of N-S direction, resulting in the reorientation of the original $20-45^{\circ}/210~230^{\circ}$ plunging L2 into mainly $35~45^{\circ}/260~280^{\circ}$ and subsidiarily $30~45^{\circ}/135~165^{\circ}$ plunging L2. After this deformation, open fold with NS striking and steeply E or W dipping axial plane is formed by the compression of E-W direction.
The foundation area for tram contains biotite gneiss, quartzo-feldspathic gneiss, calc-silicate rock, and porphyroblastic gneiss of the pre-Cambrian Kyeonggi gneiss complex. These rocks record at least three stages of deformation, as indicated by fold sets of contrasting orientations (D1-D3). Joints are generally steeply dipping and strike NW-SE to WNW-ESE. The Gonjiam Fault, which strikes WNW-ESE, follows a river in the area. The fault possesses a 3-m-wide fracture zone, a 10-m-wide damage zone, and is 15 km long. Two tunnels have been constructed through the biotite gneiss. The geometric relationship between discontinuities (e.g., joints and foliation) and tunneling direction reveals that set 3 of the AA tunnel is unstable but that BB tunnel is relatively safe.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.