• Title/Summary/Keyword: 변형율 이력

Search Result 27, Processing Time 0.029 seconds

Changes of Hysteresis Loop Characteristics of the Tendon Under Tensile Stress (Tendon의 인장응력에 따른 자기이력특성 변화의 측정)

  • Kang, Sunju;Son, Derac;Joh, Changbin;Lee, Jungwoo
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.4
    • /
    • pp.123-128
    • /
    • 2015
  • The iron is an element having a high yield strength, mechanical hardness, good electrical conductivity, and also it has been used in various fields because of ease machining. In bridges have been used tendon made of a steel wire for large loads and light weight. Tension measurement of tendon employed in PreStressed Concrete (PSC) bridge is very important for the bridge safety check. NDT (Non-Destructive Testing) is essential for the safety check, however, magnetic NDT is difficult to apply due to the non-linear magnetization curve and hysteresis loop in the magnetic properties. In this work, for basic study of magnetic NDT application, we have constructed a B-H loop measuring system for 7-strand tendon of which diameter is 15.5 mm, and which can apply tensile stress up to 2.0 GPa. We have measured hysteresis loops of two kinds of tendons under different tensile stress. Amplitude permeability and maximum magnetic induction near knee show the most sensitive and high linearity depends on tensile stress. Relative amplitude permeability was decreased from 500 to 200 and maximum magnetic flux density changed 0.6 T.

Estimation of Dynamic Displacement and Characteristics of A Simple Beam from FBG Sensor Signals (FBG센서 응답을 이용한 단순보의 동적 변위 및 동특성 추정)

  • Choi, Eun Soo;Kang, Dong Hoon;Chung, Won Seok;Kim, Hak Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.4
    • /
    • pp.503-514
    • /
    • 2006
  • FBG sensors are capable of measuring the strain of structures easily and more durably than electric resistance gauges. Thus, many researches are dedicated to the application for the response monitoring or non-destructive evaluation of structures using FBG sensors. Additionally, the measured strains at the top and bottom of a cross-section can be transformed into the curvature of the section, which can be used to calculate its vertical displacement. Hence, this study aims to measure the dynamic strain signals of a steel section simply supported beam and to estimate the dynamic displacement from the strain signals, after which the estimated displacement is com pared with the measured displacement. The dynamic characteristics (natural frequency, damping ratio and mode shape) of the beam are predicted from both the estimated and measured displacement signals, and from the strain time history of the FBG sensors. The predicted properties are compared with those of an analytical model of the beam. The estimated displacement. However, the predicted dynamic properties from both the estimated displacements and the measured strains are well-correlated with those from the measured displacement. It is therefore appreciated that the estimation of the dynamic properties of FBG sensor signals is reasonable. Especially, the strain signal of the FBG sensor was amplified at a higher-frequency region in comparison with the displacement estimation with higher-mode properties.

Nonlinear FEM Analysis for Damage Assessment of Steel Members under Very-Low-Cycle Loading (극저(極低)사이클 하중하(荷重下)에서 강부재(鋼部材)의 손상도평가(損傷度評價)를 위한 유한요소해석(有限要素解析))

  • Park, Yeon Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.703-710
    • /
    • 1994
  • A nonlinear FEM analysis of steel members under very-low-cycle loading has been performed in conjunction with experimental works. This analysis is an FEM tracing toward cracking of steel members under cyclic loads such as a strong earthquake. After verifying the procedure by comparing global hysteretic behaviors from the analytical and experimental results, the local stress-strain hysteresis at critical sections for large cyclic deformations was traced by the numerical analysis. Local strain history was discussed in relation to cracking. Based on the experimental and analytical results, a new approach to seismic safety assessment for steel members was proposed in this paper.

  • PDF

Mathematical Study for Cylindrically Orthogonal Log (원통형(円筒形) 2차원목재(次元木材)의 수학적(數學的) 연구(硏究))

  • Cha, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.55-61
    • /
    • 1988
  • 목재(木材)의 응력(應力)과 변형(變形)에 미치는 함수율 및 온도변화의 효과를 유한요소(有限要素) 분석법에 의해 측정하였다. 목재는 춘재(春材) 및 추재(秋材)를 나타내는 층구조(層構造)의 원통형(圓筒形)으로 모델화 하였으며, 선형적(線形的) 탄성체(彈性體) 그리고 원통형(圓筒形) 이력성(異方性) 재료로 가정하였다. 경단면(徑斷面)에서의 변형(變形)은 함수율 및 온도와 밀접한 관매가 인정되었으며, 최대(最大)의 압축응력(壓縮應力)은 최내층(最內層)인 만재층(晩材層)에서 일어났다. 또한 최대의 촉단면응력(觸斷面應力)은 춘재부(春材部)의 최내층(最內層)에서 일어났다. 경단(徑斷) 방향(方向)과 촉단방향(觸斷方向)의 응력간(應力間)의 차이는 외층(外層)에서 가장 크게 나타났으며 이와같은 응력(應力)의 차이가 변형(變形)을 일으키는 주요인(主要因)임이 밝혀졌다.

  • PDF

Three-Dimensional Behavior of Granular Soil (압상토의 3차원 거동)

  • 정진섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.2
    • /
    • pp.64-72
    • /
    • 1995
  • A series of cubical triaxial tests with three independent principal stresses was per- formed on Baekma river sand( # 40~100). It was found that the major principal strain at failure remained approximately constant for b values larger than about 0.3 for both the drained and undrained condition, and thereafter increased as b value decreased. The test results showed that the direction of the strain increment at failure form acute angles with the failure surfaces for both the drained and undrained condition. The results were thus not in agreement with the normality condition from classic plasticity theory. Howev- er, it was found that the projections of the plastic strain increment vectors on the octahe- dral plane were perpendicular to the failure surface in that plane. Failure strength in terms of effective stress anlaysis was greatly influenced by the variation of intermediate principal stress and so was failure criterion. The effective stress failure surfaces for both the drained and undrained condition were estimated quite well by use of Lade's failure criterion.

  • PDF

Quantitative Damage Model of Steel Members under Severe Seismic Loading (강한 지진하중하에서 강부재의 정량적인 손상 모델)

  • Park, Yeon Soo;Park, Sun Joon
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.339-353
    • /
    • 1998
  • In this paper, the previous damage models for structures and their components under seismic repeated loading were reviewed systematically. A failure criterion for steel members under severe cyclic excitations as in strong earthquakes was described. A new approach to seismic damage assessment for steel members was proposed. This method was based on a series of the experimental and numerical investigations for steel members under very low cyclic loading. In this study, very low cyclic loading means repetitive loading, 5 to 20 loading cycles, within the large plastic range. The proposed damage assessment method was focused on the local strain history at the cross-section of the most severe concentration of deformation.

  • PDF

Dynamic Nonling Analysis Model for Reinforced Concrete Elements Considering Strain Rate Effects under Repeated Loads (변형율속도를 고려한 반복하중을 받는 철근 콘크리트 부재의 동적 비선형 해석모델)

  • 심종성;문일환
    • Magazine of the Korea Concrete Institute
    • /
    • v.2 no.2
    • /
    • pp.73-80
    • /
    • 1990
  • The current analytical techniques for R/C elements under severe dynamic repeated loads, like earth¬quake or impact, have two major problems; one is that the effects of strain rate are not considered and the other one is the current analytical model was developed based on flexural behavior only. This study develops computer software that can idealize the flexural and shear behavior of R/C elements using several parameters and also can consider the effects of strain rate. The analytical results using the developed technique were compared with serveral experimental results and they were generally satisfied.

An Experimental Study on the Behaviours of Hollow CFT Column Subjected to Axial Load (중공 콘크리트충전 각형강관 기둥의 거동에 관한 연구 (I. 중심 압축실험))

  • Kim, Cheol-Hwan;Kim, Jong-Kil
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.3 s.21
    • /
    • pp.69-76
    • /
    • 2006
  • Concrete Filled Steel Tube (CFT) system is advantageous because it increases the load-carrying capacity without increasing the size of column. However CFT system has many benefits, it is not applied to field generally because of its heavyweight and difficulty of concrete filling method. As a solution to these problems, we proposed concrete filled steel tube column with hollow made by factory-manufactured PC method. The hollow concrete filled steel tube system is expected to obtain the high strength and high capacity of deformation despite it is a lightweight. This study deals with mechanical properties, strength and deformation, of hollow concrete filled steel tube subjected to axial load. 9 specimens were tested to examine mechanical properties closely, and the following results were obtained: All specimens basically showed higher initial rigidity and maximum strength with increased concrete filling rate. And most specimens showed almost linear behavior until around 80% of maximum strength regardless of filling rate, it is estimated that the elastic range is up to a half of the maximum strength which is the yield strength level.

  • PDF

Study on Viscoelastic Properties of Rice Plant (벼줄기의 점탄성(粘彈性) 특성(特性)에 관(關)한 연구(硏究))

  • Huh, Yun Kun
    • Korean Journal of Agricultural Science
    • /
    • v.13 no.2
    • /
    • pp.255-264
    • /
    • 1986
  • The objectives of this study were to examine the viscoelastic behaviour of stem samples of rice in force-relaxation and rheological model to represent its relaxation behaviour, and to study the effects of rate of deformation and initial deformation on the relaxation time. The results were as follows; 1. In the process of loading and unloading, there is any plastic deformation so called elasto-plastic hysterisis. 2. Loading and unloading of stem of rice for several cycles has also shown the reduction of plastic or residual deformation and work hardening. 3. The relaxation behaviour of stem of rice in compression may be described by a generalized Maxwell model consisting of three Maxwell units in parallel. The rheological equation of such a model is given as $$F(t)=C_1e^{{-t/{\tau}}_1}+C_2e^{{-t/{\tau}}_2}+C_3e^{{-t/{\tau}}_3}$$ 4. Force relaxation always increased with increasing rates of deformation and initial deformation.

  • PDF