• Title/Summary/Keyword: 변형률 주파수응답함수

Search Result 4, Processing Time 0.019 seconds

Estimation of Strain at Elastic System Using Acceleration Response (가속도 데이터를 활용한 선형 시스템의 변형률 예측)

  • Kim, Chan-Jung;Lee, Bong-Hyun;Jeon, Hyun-Cheol;Jo, Hyeon-Ho;Kang, Yeon-June
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.1
    • /
    • pp.9-14
    • /
    • 2012
  • This paper investigates the prediction of the dynamic strain response using acceleration response only. Two methods are proposed for the strain prediction; one is based on beam theory and the other is calculated by the frequency response function between acceleration and strain. First, it is estimated the dynamics of the simple notched beam, including the non-linearity, through the uni-axial vibration testing. Then, the dynamic strain response is predicted under two different methods using acceleration response. The validation of proposed methods is conducted by the comparison between measured strain and predicted values. The comparison reveals that the proposed method based on the FRF between acceleration and strain is more reliable one than that stemmed from beam theory and the maximum relative error is less than 8 %.

Frequency Domain Pattern Recognition Method for Damage Detection of a Steel Bridge (강교량의 손상감지를 위한 주파수 영역 패턴인식 기법)

  • Lee, Jung Whee;Kim, Sung Kon;Chang, Sung Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.1 s.74
    • /
    • pp.1-11
    • /
    • 2005
  • A bi-level damage detection algorithm that utilizes the dynamic responses of the structure as input and neural network (NN) as pattern classifier is presented. Signal anomaly index (SAI) is proposed to express the amount of changes in the shape of frequency response functions (FRF) or strain frequency response function (SFRF). SAI is calculated using the acceleration and dynamic strain responses acquired from intact and damaged states of the structure. In a bi-level damage identification algorithm, the presence of damage is first identified from the magnitude of the SAI value, then the location of the damage is identified using the pattern recognition capability of NN. The proposed algorithm is applied to an experimental model bridge to demonstrate the feasibility of the algorithm. Numerically simulated signals are used for training the NN, and experimentally-acquired signals are used to test the NN. The results of this example application suggest that the SAI-based pattern recognition approach may be applied to the structural health monitoring system for a real bridge.

Characteristics and Applications of a Strain Modal Testing Method (변형률 모드시험방법의 특성 및 응용)

  • 차주환;하태희;이건명
    • Journal of KSNVE
    • /
    • v.8 no.3
    • /
    • pp.420-427
    • /
    • 1998
  • A strain modal testing method has been applied to a cantilever beam to investigate the characteristics of the method. By applying the method to an analytical and an experimental system, it was shown that accurate modal parameters can be estimated from strain frequency response functions using a current modal parameter extraction algorithm. The modal parameters estimated by the method are more accurate than those by the conventional method which uses accelerometers when the tested system is of light weight. The method can be used to predict strain responses and excitation forces for given excitation forces and responses, respectively. Cracks on a structure can be detected by measuring strian FRFs and comparing them with the original ones.

  • PDF

A Study on the Characteristics and Applications of a Strain Modal Testing Method (변형률 모드시험방법의 특성 및 응용)

  • 차주환;하태희;이건명
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.216-221
    • /
    • 1997
  • A strain modal testing method has been applied to a cantilever beam to investigate the characteristics of the method. By applying the method to an analytical and an experimental system, it was shown that accurate modal parameters can be estimated from the FRFs using a current modal parameter extraction algorithm. The modal parameters estimated by the method are more accurate than those by the conventional method which uses accelerometers when the tested system is of light weight. The strain response for a given excitation force and the force which causes the response can be predicted using the measured strain FRFS.

  • PDF