• Title/Summary/Keyword: 변형률에너지밀도함수

Search Result 10, Processing Time 0.02 seconds

Evaluation of Fatigue Characteristics of Rubber for Tire Using Strain Energy Density (변형률에너지밀도를 이용한 타이어용 고무의 피로 특성 평가)

  • Ahn, Sang-Soo;Kim, Seong-Rae;Park, Han-Seok;Kang, Yong-Gu;Koo, Jae-Mean;Seok, Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1163-1169
    • /
    • 2012
  • Rubber, a hyperelastic material, is the main material used in tires. During the operation of a car, the tire receives various types of loads. The accumulation of strain energy due to such loads induces tire failure. Generally, because rubber materials used for tires have stress softening characteristics, unlike metals, test methods used for metals cannot be applied to rubber. Therefore, in this study, for the evaluation of the fatigue properties of two types of specimens that have different material components, a tensile test and a fatigue test according to the extended strain range dissimilar to ASTM D4482 are performed, and fatigue life equations are proposed based on the test results.

절삭가공 해석을 위한 유한요소법의 적용

  • 김국원;안태길;이우영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.81-81
    • /
    • 2003
  • 최근 유한요소법을 이용하여 절삭가공을 해석하는 연구가 많이 발표되고 있다. 이 때 가장 문제되는 점이 피삭재에서 칩으로 분리하는 조건이다. 일반적으로 칩 분리 조건이라 일컬어지는 이 조건을 어떻게 설정할 것인가에 대해 현재까지도 많은 연구가 이루어지고 있다. 현재까지 제시된 칩 분리 판별 조건은 두 가지 유형 - 기하학적, 물리적으로 나눌 수 있다. 기하학적 칩 분리 조건은 공구 끝단과 바로 앞 요소의 거리를 기준으로 정해진 특정한 값에 도달하면 요소가 분리되는 혹은 없어지는 방법을 이용하는 것이며(Fig. 1 참조), 물리적 칩 분리 조건은 요소 내의 소성변형률 혹은 변형률 에너지 밀도함수 등의 값을 기준으로 분리시키는 방법이다. 본 연구에서는 상용 유한요소 해석 프로그램인 ANSYS를 이용하였으며 이 프로그램에서 제공하는 element birth/kill 기법을 이용하여 기하학적 판별조건에 도달하면 공구 끝단 앞의 요소가 사라지는 방법을 취하였다. Fig. 2는 절삭가공을 위한 유한요소 모델링을 나타낸다. 칩-공구 접촉 부위에 접촉요소를 사용하였으며, 피삭재의 왼쪽과 아래쪽 부위는 각각 변위구속을 하였다. 공구의 이동은 변위경계조건의 값을 변화시킴으로써 구현하였다. 절삭력을 비교함으로써 해석결과의 타당성을 검토하였으며, 피삭재 내의 응력, 변형률 분포 등을 살펴보았다.

  • PDF

Effects of Crack Velocity on Fracture Properties of Modified S-FPZ Model (수정 특이-파괴진행대이론의 파괴특성에 대한 균열속도의 영향)

  • Yon Jung-Heum
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.511-520
    • /
    • 2004
  • The fracture energy evaluated from the previous experimental results can be simulated by using the modified singular fracture process zone (S-FPZ) model. The fracture model has two fracture properties of strain energy release rate for crack extension and crack close stress versus crack width relationship $f_{ccs}$ ( w ) for fracture process zone (FPZ) development. The $f_{ccs}$( w ) relationship is not sensitive to specimen geometry and crack velocity. The fracture energy rate in the FPZ increases linearly with crack extension until the FPZ is fully developed. The fracture criterion of the strain energy release rate depends on specimen geometry and crack velocity as a function of crack extension. The variation of strain energy release rate with crack extension can explain theoretically the micro-cracking, micro-crack localization and full development of the FPZ in concrete.

Measurement of Mechanical Material Properties of Rubber Compounds Sampled from a Pneumatic Tire (타이어에서 채취한 고무배합물의 기계적 물성 측정)

  • 김용우;김종국
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.404-409
    • /
    • 2002
  • Pneumatic tires usually contain a variety of rubber compositions, each designed to contribute some particular factor to overall performance. Rubber compounds designed for a specific function will usually be similar but not identical In composition and properties. Since 1970`s finite element analysis of tire has been performed extensively, which requires some energy density functions of rubber components of a tire. The conventional Mooney-Rivlin material model is one of the description that is commonly used in the analysis of tire. In this paper, we report the two material constants of gooney-Rivlin material model for some rubber compounds of a real pneumatic tire, which are obtained through uniaxial tension test.

  • PDF

Effect of Interface in Three-phase Cord-Rubber Composites (세 가지 상을 갖는 코드섬유-고무 복합재료의 계면의 영향)

  • Kim, Jong-Kuk;Yum, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1249-1255
    • /
    • 2009
  • Cord-rubber composites widely used in tires show very complicated mechanical behavior such as nonlinearity and large deformation. Three-phase(cord, rubber and the interface) modeling has been used to analyze the stress distribution in the cord-rubber composites more accurately. In this study, finite element methods were performed using two-dimensional generalized plane strain element and plane strain element to investigate the stress distribution and effective modulus of cord-rubber composites. Neo Hookean model was used for rubber property and several interface properties were assumed for various loading directions. It was found that the interface properties affect the effective modulus and the distributions of shear stress.

A Study on the Dynamic Behavior of a Simply Supported Beam with Moving Masses and Cracks (이동질량과 크랙을 가진 단순지지 보의 동특성에 관한 연구)

  • 윤한익;손인수;조정래
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.6
    • /
    • pp.47-52
    • /
    • 2003
  • To determine the effect of transverse open crack on the dynamic behavior of simply-supported Euler-Bernoulli beam with the moving masses, an iterative modal analysis approach is developed. The influence of depth and position of the crack in the beam, on the dynamic behavior of the simply supported beam system, have been studied by numerical method. The cracked section is represented by a local flexibility matrix, connecting two undamaged beam segments that is, the crack is modeled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section, and is derived by applying a fundamental fracture mechanics theory. As the depth of the crack is increased, the mid-span deflection of the simply-supported beam, with the moving mass, is increased. The crack is positioned in the middle point of the pipe, and the mid-span defection of the simply-supported pipe represents maximum deflection.

Finite Element Analysis of Gaskets for Hydrogen Fuel Cells (수소 연료전지용 가스켓의 유한요소해석)

  • Cheon, Kang-Min;Jang, Jong-Ho;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.95-101
    • /
    • 2021
  • An analysis was conducted to predict the behavior of gasket by applying an optimal-strain energy-density function selected through a uniaxial tensile test and an analysis of the gasket used in an actual hydrogen fuel cell. Among the models compared to predict the materials' properties, the Mooney-Rivlin secondary model showed the behavior most similar to the test results. The maximum stress of the gasket was not significantly different, depending on the location. The maximum surface pressure of the gasket was higher at positions "T" and "Y" than at other positions, owing to the branch-shape effect. In the future, a jig that can measure the surface pressure will be manufactured and a comparative verification study will be conducted between the test results and the analysis results.

Finite Element Analysis of Surface Pressure of Hydrogen Fuel Cell Gasket (수소 연료전지 개스킷의 면압에 대한 유한요소 해석)

  • Jeon, Hyeong-Ryeol;Park, Soo-Hyun;Zoo, Woo-jung;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.6
    • /
    • pp.60-66
    • /
    • 2022
  • The optimal strain energy function was obtained by comparing the results of the analysis using the strain energy functions obtained by uniaxial tensile and equibiaxial tensile tests on gasket materials used in hydrogen fuel cells, with the results measured using a contact pressure measurement sensor. At this time, even when only the uniaxial tensile test was conducted, Yeoh could obtain the most accurate results even by conducting only the uniaxial tensile test. Using this, an analysis of the cross section of the gasket used in stack confirmed a safe contact pressure and no deformation on the separator. In the future, research will be conducted to verify the gasket durability by reliability evaluation.

Current Status of X-ray CT Based Non Destructive Characterization of Bentonite as an Engineered Barrier Material (공학적방벽재로서 벤토나이트 거동의 X선 단층촬영 기반 비파괴 특성화 현황)

  • Diaz, Melvin B.;Kim, Joo Yeon;Kim, Kwang Yeom;Lee, Changsoo;Kim, Jin-Seop
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.400-414
    • /
    • 2021
  • Under high-level radioactive waste repository conditions, bentonite as an engineered barrier material undergoes thermal, hydrological, mechanical, and chemical processes. We report the applications of X-ray Computed Tomography (CT) imaging technique on the characterization and analysis of bentonite over the past decade to provide a reference of the utilization of this technique and the recent research trends. This overview of the X-ray CT technique applications includes the characterization of the bentonite either in pellets or powder form. X-ray imaging has provided a means to extract grain information at the microscale and identify crack networks responsible for the pellets' heterogeneity. Regarding samples of pellets-powder mixtures under hydration, X-ray CT allowed the identification and monitoring of heterogeneous zones throughout the test. Some results showed how zones with pellets only swell faster compared to others composed of pellets and powder. Moreover, the behavior of fissures between grains and bentonite matrix was observed to change under drying and hydrating conditions, tending to close during the former and open during the latter. The development of specializing software has allowed obtaining strain fields from a sequence of images. In more recent works, X-ray CT technique has served to estimate the dry density, water content, and particle displacement at different testing times. Also, when temperature was added to the hydration process of a sample, CT technology offered a way to observe localized and global density changes over time.

Fiber Distribution Characteristics and Flexural Performance of Extruded ECC Panel (압출성형 ECC 패널의 섬유분포 특성과 휨 성능)

  • Lee, Bang-Yeon;Han, Byung-Chan;Cho, Chang-Geun;Kwon, Young-Jin;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.573-580
    • /
    • 2009
  • This paper presents the mix composition, production method, and curing condition applied to the extruded ECC(Engineered Cementitious Composite) panel which are able to exhibit multiple cracking and potential pseudo strain-hardening behavior. In addition to the production technique of extruded ECC panel, the effect of fiber distribution characteristics, which are uniquely created by applying extrusion process, on the flexural behavior of the panel is also focussed. In order to demonstrate fiber distribution, a series of experiments and analyses, including image processing/analysis and micro-mechanical analysis, was performed. The optimum mix composition of extruded ECC panel was determined in terms of water matrix ratio, the amount of cement, ECC powder, and silica powder. It was found that flexural behavior of extruded ECC panel was highly affected by the slight difference in mix composition of ECC panel. This is mainly because the difference in mix composition results in the change of micro-mechanical properties as well as fiber distribution characteristics, represented by fiber dispersion and orientation. In terms of the average fiber orientation, the fiber distribution was found to be similar to the assumption of two dimensional random distribution, irrespective of mix composition. In contrast, the probability density function for fiber orientation was measured to be quite different depending on the mix composition.