• Title/Summary/Keyword: 변형률기반

Search Result 241, Processing Time 0.026 seconds

에너지 파이프라인의 변형률기반 설계 기법

  • Ji, Gwang-Seup;Kim, U-Sik
    • Journal of the KSME
    • /
    • v.54 no.1
    • /
    • pp.32-37
    • /
    • 2014
  • 에너지 파이프라인 건설의 경제성을 확보하기 위한 최신 설계기법인 변형률기반 설계기법과 그 원리를 소개하고, 전통적인 응력기반 설계기법과 대비하여 변형률기반 설계기법을 도입하기 위한 필요사항과 현 단계의 변형률 기반설계기법의 발전현황을 정리하여 실무 기술자의 이해를 돕고자 하였다.

  • PDF

Bending Spring Model for Stable Strain-Based Dynamics in Triangular Meshes (삼각형 메쉬에서 안정적인 변형률 기반 동역학을 위한 굽힘 스프링 모델)

  • Kim, Jong-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.341-344
    • /
    • 2022
  • 본 논문에서는 삼각형 메쉬 기반에서 변형률 기반 동역학(Strain-based dynamics, SBD)을 안정적으로 표현할 수 있는 굽힘 스프링 구조와 감쇠 기법에 대해 설명한다. SBD는 삼각형 메쉬의 에지 길이(Edge length) 기반의 에너지 대신 변형률(Strain)을 활용하여 에너지를 모델링한다. 하지만, 비정상적인 삼각형(Degenerate triangle)인 경우 변형률이 불안정하게 계산되어 잘못된 방향으로 늘어나는 문제가 발생한다. 본 논문에서는 이러한 문제를 효율적으로 처리할 수 있는 굽힘 스프링(Bending spring) 구조에 대해 소개한다. 결과적으로 본 논문에서 제안하는 기법은 안정적으로 SBD를 처리할 수 있기 때문에 다양한 재질의 옷감 시뮬레이션을 안정적으로 표현할 수 있도록 한다.

  • PDF

Long-Term Measurement of Static Strains of Jacket Type Offshore Structure under Severe Tidal Current Environments (빠른 조류 환경에서의 재킷식 해양구조물 시공 중 및 운영 중 장기 변형률 계측 및 분석)

  • Yi, Jin-Hak;Park, Jin-Soon;Park, Jun-Seok;Lee, Kwang-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.389-398
    • /
    • 2012
  • In this study, structural strain responses of the jacket-type Uldolmok tidal current power plant structure under severe tidal environments were measured and analyzed using long-term measurement system during construction and also operation. It was observed that there were significant changes in strain responses at the steps of jacket lifting, block loading, pile ejection and insertion. Strains due to dead loads and tidal loads were analyzed before and after removal of a jacket leg, and it was also found that the strains due to dead load were much significantly changed after jacket leg removal. From the measurement data during operation, it was found that strain responses were fluctuated with M2 and M4 tidal periods and also relatively short period of about 10 min due to the peculiar tidal characteristics in the Uldolmok strait. Finally, the neural network-based non-parametric estimation models were investigated to build up the signal-based structural damage monitoring system.

Proposal of Stress-Strain Relations Considering Confined Effects for Various Composite Columns (합성형태에 따른 콘크리트 구속효과를 고려한 응력-변형률 관계식의 제안)

  • Park, Kuk Dong;Hwang, Won Sub;Yoon, Hee Taek;Sun, Woo Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.265-275
    • /
    • 2010
  • Concrete filled steel tube and concrete encased steel tube columns are expected to have confined effects of concrete by steel and reinforced effects of local buckling by concrete. On the basis of confined state concrete models of previous researches, stress-strain and load-displacement relations of RC, CFT and CET columns are analyzed by steel ratio. After comparing analysis results with experimental results, Modified stress-strain relations are derived through evaluation the influence upon confined effects of concrete in each cases. Also, the modified stress-strain models are carried out to be compared with specified strength of various countries.

The Strain Corrections for Accuracy Improvement to Predict Large Deformation of Wings (날개 대변형 예측의 정확성 향상을 위한 변형률 보정)

  • Lee, Hansol;Kim, In-Gul;Park, Sunghyun;Kim, Min-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • The information about the deformations of high-aspect-ratio wings is needed for the real-time monitoring of structural responses. Wing deformation in flight can be predicted by using relationship between the curvatures and the strains on the wing skin. It is also necessary to consider geometric nonlinearity when the large deformation of wing is occurred. The strain distribution on fixed-end is complex in the chordwise direction because of the geometric shape of fixed-wings on fuselages. Hence, the wing displacement can be diversely predicted by the location of the strain sensing lines in the chordwise direction. We conducted a study about prediction method of displacements regardless of the chordwise strain sensing locations. To correct spanwise strains, the ratio of spanwise strain to chordwise strain, Poisson's ratio, and the ratio of the plate strain to the beam strain were used. The predicted displacements using the strain correction were consistent with those calculated by the FEA and verified through the bending testing.

Simulation of Stable Cloth on Triangular Mesh via LOD-Based Bending Springs on Strain-Based Dynamics

  • Jong-Hyun Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.9
    • /
    • pp.73-79
    • /
    • 2023
  • This paper describes a level of detail (LOD) based bending spring structure and damping technique that can reliably represent strain-based dynamics (SBD) on a triangular mesh. SBD models elastic energy using strain instead of energy based on the edge length of a triangular mesh. However, when a large external force occurs, the process of calculating the elastic energy based on edges results in a degenerate triangle, which stretches in the wrong direction because it calculates an unstable strain. In this paper, we introduce an LOD-based bending spring generation and energy calculation method that can efficiently handle this problem. As a result, the technique proposed in this paper can reliably and efficiently handle SBD based on bending springs, which can provide a stable representation of cloth simulation.

Design and Fabrication of Split Hopkinson Pressure Bar for Dynamic Mechanical Properties of Self-reinforced Polypropylene Composite (폴리프로필렌 자기 보강 복합재의 동적 물성 구축을 위한 Split Hopkinson Pressure Bar의 설계 및 제작)

  • Kang, So-Young;Kim, Do-Hyoung;Kim, Dong-Hyun;Kim, Hak-Sung
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.221-226
    • /
    • 2018
  • The Split Hopkinson Pressure Bar(SHPB) has been the most widely used apparatus to characterize dynamic mechanical behavior of materials at high strain rates between $100s^{-1}$ and $10,000s^{-1}$. The SHPB test is based on the wave propagation theory which was developed to give the stress, strain and strain rate in the specimen using the strains measured in the incident and transmission bars. In this study, the SHPB was directly designed and fabricated for the dynamic mechanical properties of fiber reinforced plastic (FRP) composites. In addition, this apparatus was verified for the validity by comparing the strain data obtained through the high speed camera and Digital Image Correlation(DIC) during the high strain rate compression test of the self-reinforced polypropylene composite (SRPP) specimen.

Showing Morphological Evolution of the Strain Response Envelope of Clay with Fourier Descriptor Analysis (퓨리에 기술자를 이용한 점성토의 변형률 응답 곡선의 형상 변이 분석)

  • Kim, Taesik;Jung, Young-Hoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.3
    • /
    • pp.25-30
    • /
    • 2017
  • This paper introduces a novel method to quantify the morphological evolution of the strain response envelope. The strain response envelope is defined as an image in strain increment space corresponding to the unit stress input in stress space. Based on the shape of strain response envelopes, the deformation characteristics of soils can be described using the framework of elastic-plastic theory. Fourier descriptor analysis was used to investigate the morphological characteristics of strain response envelopes. The numerical results show that when the stress input remains in the initial yield surface the Fourier descriptors remain constant. Once the stress input crosses the initial yield surface, every descriptors deals in this study change. Numerical and experimental results of this study show that clear yielding response is only found in natural block samples. Among the Fourier descriptors, the descriptor called as asymmetry is the best for detecting the yield and is minimally sensitive to the number of input stress paths.

A Study on the Safety Evaluation of Structural Members based on Strain Sensors (변형률 센서 기반 구조부재의 안전성 평가에 관한 기초 연구)

  • Lee, Hong-Min;Oh, Byung-Kwan;Park, Hyo-Seon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.700-703
    • /
    • 2010
  • 일반적으로 구조부재의 안전성 평가는 계측된 센서의 변형률로부터 부재의 최대응력 또는 부재력 수준을 결정하고 설계기준에 의한 부재의 허용응력 또는 설계 강도와의 비교에 의해서 이루어진다. 그러나 이러한 설계기준은 건물의 설계단계에서 미리 가정된 하중 및 부재의 강도에 대한 여러 확률분포 또는 안전율을 반영하여 작성된 것으로 실질적으로 센서로부터 측정한 데이터를 직접 설계기준에 반영하는 것은 합리적이지 못하다. 본 연구에서는 실제 센서로부터 측정되는 변형률을 이용하여 합리적으로 구조부재의 안전성 평가를 수행하기 위한 방법을 모색하고자 한다. 설계기준을 고려한 변형률 제한치, 저감계수가 도입되었으며 이에 추가적으로 센서와 관련한 계수를 도입하여 구조부재의 안전성 평가를 위한 방향을 제시한다.

  • PDF

A Numerical Study to Estimate the Lateral Responses of Steel Moment Frames Using Strain Data (변형률 데이터를 이용한 철골모멘트골조의 횡응답 예측을 위한 해석적 연구)

  • Kim, Si-Jun;Choi, Se-Woon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.6
    • /
    • pp.113-119
    • /
    • 2016
  • In this study, the method to predict the lateral response by using strain data is presented on the steel moment frame. For this, the reliability of the proposed method by applying the example of five-story frame structure were verified. Using the strain value of columns, it predicted the lateral response of structure. It is assumed that all of four strain sensors for one column set up and the strain responses of both end of the column are utilized. The lateral response of member is calculated by using the slope deflection method. Also, using the acceleration response of the one layer, the stiffness of the rotation spring located in the supporting point is predicted. As a result, it was effective to understand the lateral displacement and acceleration responses and to predict local damage and location.