• Title/Summary/Keyword: 변위 감소비

Search Result 341, Processing Time 0.027 seconds

A Stereo Matching Based on A Genetic Algorithm Using A Multi-resolution Method and AD-Census (다해상도 가법과 AD-Census를 이용한 유전 알고리즘 기반의 스테레오 정합)

  • Hong, Seok-Keun;Cho, Seok-Je
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.1
    • /
    • pp.12-18
    • /
    • 2012
  • Stereo correspondence is the central problem of stereo vision. In this paper, we propose a stereo matching scheme based on a genetic algorithm using a multi-resolution method and AD-Census. The proposed approach considers the matching environment as an optimization problem and finds the disparity by using a genetic algorithm And adaptive chronosome structure using edge pixels and crossover mechanism are employed in this technique. A cost function is composes of certain constraints whice are commonly used in stereo matching. AD-Census measure is applied to reduce disparity error. To increase the efficiency of process, we apply image pyramid method to stereo matching and calculate the initial disparity map at the coarsest resolution. Then initial disparity map is propagated to the next finer resolution, interpolated and performed disparity refinement using local feature vector. We valid our method not only reduces the search time for correspondence compared with conventional GA-based method but also ensures the validity of matching.

A study on the effects of ground reinforcement on the behaviour of pre-existing piles affected by adjacent tunnelling (터널근접시공에 의한 기 존재하는 인접말뚝의 거동에 지반보강이 미치는 영향에 대한 연구)

  • Jeon, Young-Jin;Kim, Sung-Hee;Kim, Jeong-Sub;Lee, Cheol-Ju
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.389-407
    • /
    • 2017
  • In the current work, a series of three-dimensional finite element analysis was carried out to understand the behaviour of pile when the tunnel passes through the lower part of a single pile or group piles. At the current study, the numerical analysis analysed the results regarding the ground reinforcement condition between the tunnel and pile foundation. In the numerical modelling, several key issues, such as the pile settlements, the axial pile forces, the shear stresses and the total displacements near the tunnel have been thoroughly analysed. The pile head settlements of the single pile with the maximum level of reinforcement decreased by about 16% compared to the pile without ground reinforcement. Furthermore, the maximum axial force of the single pile with the maximum level of ground reinforcement experienced a 30% reduction compared to the pile without reinforcement. It has been found that the angle of ground reinforcement in the transverse direction affects the pile behaviour more so than the length of the ground reinforcement in the longitudinal direction. On the other hand, in the case of the pile group with the reinforced pile cap, the ground displacement near the pile tip appears to be similar to the corresponding ground displacement without reinforcement. However, it was found that the pile cap near the pile head greatly restrained the pile head movement and hence the axial pile force increased by about 2.5 times near the pile top compared to the piles in other analysis conditions. The behaviour of the single pile and group piles, depending on the amount of ground reinforcement, has been extensively examined and analysed by considering the key features in great details.

Acute Occlusal Change Following Acute Anterior Disc Displacement without Reduction: A Case Report (급성 비정복성 관절원판 변위에 따른 급성 교합변화의 증례)

  • Jung, Jae-Kwang;Hur, Yun-Kyung;Choi, Jae-Kap
    • Journal of Oral Medicine and Pain
    • /
    • v.37 no.4
    • /
    • pp.205-211
    • /
    • 2012
  • A 35 year-old female presented with the complaint of sudden occurrence of bite change and concurrent opening limitation, as well as pain in the right temporomandibular joint (TMJ) during mouth opening. From her history it was revealed that she had simple clicking of right TMJ for several years before onset of these symptoms, and that the clicking sound subsided recently after development of opening limitation. On clinical examination, anterior open bite, midline shift of the mandible to right, and premature contacts on left posterior teeth were observed. Maximum mouth opening and lateral movement to left were also restricted. On magnetic resonance images, the right TMJ showed anterior disc displacement without reduction and the posterior joint space is greatly collapsed by retrusion of the condyle. It was thought that the sudden occurrence of occlusal change would be resulted from abrupt displacement of the mandible associated with development of the anterior disc displacement without reduction. The stabilization appliance traction therapy was performed initially for first 3 months along with physical and pharmacologic therapy. However, the anterior open bite and opening limitation didn't resolve and the position of mandible still remained altered. So the stabilization appliance was changed to intermaxillary traction device. Then the mandible returned progressively to normal position and the occlusion became more stable and comfortable. After 5 months of intermaxillary traction therapy, the anterior open bite was dissolved completely and the occlusion became stabilized satisfactorily along with recovery of normal mouth opening range. On post-treatment magnetic resonance image, remodeling of condylar head was observed.

Inelastic Dynamic Analysis of Structure Subjected to Across-Wind Load (풍직각방향 풍하중이 작용하는 구조물의 비탄성 동적 해석)

  • Ju-Won Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.3
    • /
    • pp.185-192
    • /
    • 2023
  • In this study, fluctuating wind velocity for time history analysis is simulated by a single variate, single-dimensional random process using the KBC2022 spectrum about across-wind direction. This study analyzed and obtained the inelastic dynamic response for structures modeled as a single-degree-of-freedom system. It is assumed that the wind response is excellent in the primary mode, the change in vibration owing to plasticization is minor, along-wind vibration and across-wind vibration are independent, and the effect of torsional vibration is small. The numerical results, obtained by the Newmark-𝛽 method, shows the time-history responses and trends of maximum displacements. As a result of analyzing the inelastic dynamic response of the structure with the second stiffness ratio(𝛼) and yield displacement ratio (𝛽) as variables, it is identified that as the yield displacement ratio (𝛽) increases when the second stiffness ratio is constant, the maximum displacement ratio decreases, then reaches a minimum value, and then increases. When the stiffness ratio is greater than 0.5, there is a yield point ratio at which the maximum displacement ratio is less than 1, indicating that the maximum deformation is reduced compared to the elastically designed building even if the inelastic behavior is permitted in the inelastic wind design.

Real-time Vibration Control of Bridges by MR damper and Lyapunov Control Algorithm (MR댐퍼 및 Lyapunov제어알고리즘을 이용한 교량 구조물의 실시간 진동제어)

  • Heo, Gwang-Hee;Jeon, Joon-Ryong;Park, Seung-Bum;Oh, Sung-Keun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.55-61
    • /
    • 2010
  • This paper is concerned with an experimental research to random vibration control caused by external loads specially in bridges which tend to be structurally flexible. Experimenting on a reduced structure modelled on Seohae Grand Bridge, we inflicted a reduced form of El-centro wave on the model structure to a proper proportion. On the center of its middle span, we placed a shear type MR damper which was to control its vibration and also acquire its structural responses such as displacement and acceleration at the same site. The experiments concerning controlling vibration were performed according to a variety of theories including un-control, passive on/off control, and Lyapunov stability theory. Its control performance was evaluated in terms of the peak absolute displacements, the peak absolute accelerations and the total power required to control the bridge which differ from each different experiment method. Among all the methods applied in this paper, case of Lyapunov control method turned out to be the most effective to reduces of displacement and acceleration. Also, this method could to decrease consuming of external power for vibration control. Finally, it was noteworthy that Lyapunov control method was specially effective in the vibration control employing a semi-active damper such MR damper.

Comparison of Behaviors of Jointless Bridge according to Depth of Abutment Among Numerical Models (수치해석 모델에 따른 무조인트 교량의 교대 깊이별 거동 비교)

  • Kim, Seung-Won;Lee, Hwan-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.3
    • /
    • pp.167-174
    • /
    • 2022
  • This study investigates the behavior of a jointless bridge that integrates superstructure and abutment without an expansion joint. Based on the sensitivity analyses conducted in previous studies, a shell-based model was determined to be the most suitable numerical analysis model for jointless bridges due to the similarity of the model's results compared with the obtained displacement shape, which was influenced by relative errors, precision, and practical aspects. Accordingly, the behavior of a jointless bridge was analyzed at various wall depths using shell element-based and solid element models. In addition, the results of MIDAS Civil and ABAQUS analysis programs were compared. In the case of semi-integrated bridges (A and B), the displacement decreased as the wall depth increased due to the ground reaction force in Case 1 under a linear spring condition and +30℃. In the case where temperature was -30℃, the change in displacement was small because the ground reaction did not occur. As for bridge C (a fully integrated alternating bridge) and bridge D (an integrated chest wall alternating bridge), the displacement decreased as the wall depth increased at both +30 and -30℃ due to pile resistance. As for the comparison between the analysis programs used, the relative error in Case 1 was small, whereas a significant difference in Case 2 was observed. The foregoing variation is possibly due to the difference in the application of the nonlinear spring in the programs.

The Short-term Safety Factor Considering Passive Resistance Effect of Bar Anchor Based on Smart Construction (스마트 건설기반의 강봉앵커 수동저항 효과를 고려한 단기 안전율)

  • Donghyuk Lee;Duhyun Baek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.4
    • /
    • pp.29-35
    • /
    • 2024
  • This is an analytical study to confirm the passive resistance effect before post-tensioning of steel bar anchors. When using a steel bar as a permanent anchor, if displacement occurs within the slope even before the head load is applied, the displacement is suppressed by the passive resistance caused by the interaction between the steel bar, grout, and surrounding soil. Accordingly, the shape of the failure surface and changes in the safety factor were examined using limit equilibrium analysis and finite element analysis targeting sites where steel bar anchors were actually applied. It was found that the safety factor of the slope reinforced with steel bar anchors is 2.02 using finite element analysis, which is about 5.9% smaller than 2.14 using limit equilibrium analysis. Also, the location of the failure surface was found to be deeper compared to the unreinforced slope. Likewise, the factor of safety has a 153% and 163% increase using finite element method and limit equilibrium analysis, respectively. In addition, the maximum displacement occurs in the lower unreinforced section within the slope, and the displacement is found to be reduced by 42 to 83% at the location where the steel bar anchors are installed.

Analyses of Structural Behaviors According to Core Location in the Building with Symmetric Plan (대칭 평면형 건물에서의 코어위치에 따른 구조거동 분석)

  • Kim, Jung-Rae;Kim, Jae-Yo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.116-124
    • /
    • 2020
  • In order to analyze the lateral-load resisting capability according to the core locations, three-dimensional structural analyses were performed for 20-story buildings with symmetric plan. Four analytical models for a center core, a single-axial eccentric core, and a double-axial eccentric core were constructed, and eigenvalue analyses, wind-load analyses, and earthquake-load analyses were performed. Torsion did not occur in the central core building, but the bending and torsion occurred in combination with the arrangement of the eccentric core, and the lateral-load resisting capability was degraded. The change in the wind load according to the eccentric core was small, but the maximum lateral displacement was found to increase greatly by the eccentric arrangement of the core. In addition, in case of the eccentric core, the seismic load was slightly reduced compared to the center core due to the decrease in the lateral stiffness, but it was found that the maximum story drift ratio increased significantly due to the torsional effect. Based on these results, the structural behavior according to the position of the core can be clearified and used as a guideline for core locations in the planning and design stage.

Analysis of Tensile Force of Nail and Displacement of Soil Nailed Wall at Stepwise Excavation (단계별 굴착시 쏘일네일링 벽체의 변위와 네일의 인장력 분석)

  • 전성곤
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.71-86
    • /
    • 1999
  • The displacements of soil nailed wall and the nail tensile force for 11 soil nailing sites were investigated by using measurements obtained from inclinometer and strain gauge. The maximum horizontal displacement which occurred between 5% and 15% of the final excavation depth was found to be below 0.3% and 0.2% of excavation depth for well and poorly constructed sites. It was also found that the maximum horizontal displacements for 0.4%, 0.3% and 0.2% of excavation depth occurred when the ratios of nail length to final excavation depth were 0.5, 0.5~0.6 and 0.6~0.7. But the maximum horizontal displacement increased by 0.3% of excavation depth when the ratio was above 0.7. This was probably due to the shallow excavation depth and the deep soil stratum. The non-dimensional maximum tensile force of nail, K, from ground surface to $(0.6H_f)$ of the final excavation depth was less than 0.8 and decreased linearly between $(0.6H_f)$ and the final excavation depth. Also, the maximum tensile force was found to reach up to 60% of the ultimate tensile force at final excavation.

  • PDF

Optimal Design of CEDM considering the Dynamic Characteristics (제어봉 구동장치의 동적 특성을 고려한 최적설계)

  • 김인용;진춘언
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.225-231
    • /
    • 1997
  • The dynamic characteristics of Control Element Drive Mechanism(CEDM) for Korea Standard Nuclear Power Plant are studied with the CEDM modeled as a secondary mass in a simplified two degree of freedom system, while the reactor vessel as a primary mass. The optimal .mu.-f curve is developed to reduce the response amplitudes of both primary and secondary masses. In order to improve a design it is proposed that the natural frequency ratio, f, should be converged to 0.93, the mass ratio, .mu., should not be reduced, and the result should be converged to the optimal .mu.-f curve. Optimal design for CEDM components has been carried out and the response amplitude ratios of reactor are reduced 10.5 - 19.7% while those of CEDM are reduced 6.3 - 3.4%.

  • PDF