• 제목/요약/키워드: 변속 제어기

검색결과 131건 처리시간 0.023초

V-벨트 무단변속기(無斷變速機)를 이용(利用)한 자탈형(自脫型) 콤바인의 주행속도(走行速度) 제어(制御)(III) -컴퓨터 시뮬레이션- (A Forward Speed Control of Head-feed Combine Using Continuously Variable V-belt Transmission(III) -Computer Simulation-)

  • 최규홍;류관희
    • Journal of Biosystems Engineering
    • /
    • 제17권4호
    • /
    • pp.396-403
    • /
    • 1992
  • In order to operate a combine harvester at the optimum conditions and maximum performance, a forward speed control system(FSCS) was designed and develped. The FSCS consisted of engine, continuously variable V-belt transmission, threshing unit, traveling unit, detecting unit, and controller. Each components of the system were mathematically modeled. By a computer simulation, the effects of control parameters such as hydraulic piston speed, speed ratio, dead band of engine speed on the system performance were analysed, and the optimum control conditions were identified. The system appeared to be the most stable at the hydraulic piston speed of 10.6mm/s and the speed ratio of 0.4. The proper dead band of engine speed appeared to be 30rpm through the simulation and verification tests.

  • PDF

전자제어식 자동변속기 장착 승용차의 구동성능 해석 (Analysis of Driving Performance for the Passenger Car Equipped with an Electronically Controlled Automatic Transaxle)

  • 김선일;임원식
    • 동력기계공학회지
    • /
    • 제6권2호
    • /
    • pp.73-81
    • /
    • 2002
  • In this study, electronically controlled automatic transmission adopted on a subcompact model in the market was modelled, and the driving performances of the transmission were simulated with the models. Kinetic and dynamic models of working components are established. The driving simulation program is developed with those models, and the various driving conditions are analyzed. With the results, the dynamic behaviour of the engine and the automatic transmission is easily understood. Especially, the transient performances of torque converter and clutches are deeply analyzed. Skipping the vehicle road test by using this analyzing tool, we can expect the cost down and the reduction of the development period of automatic transmission.

  • PDF

무단 변속기를 위한 비선형 제어 시스템의 설계 (Design of a Nonlinear Control System for Continuously Variable Transmission)

  • 박성욱;서보혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2348-2351
    • /
    • 2000
  • In order to operate SI(Spark Ignition) engine at the optimal fuel efficiency, it is necessary to use continuously variable transmission(CVT) which has more excellent fuel consumption property than transmissions of gear box types commonly used. This study introduces new type of nonlinear control approach to control precisely CVT including nonlinear characteristics. The nonlinear controller is basically composed of input-state feedback linearization, which can cancel the nonlinearities included in CVT on specific controllable area, and sliding-mode control. In this paper, good control performance of contrtol system with the nonlinear controller is confirmed with computer simulations.

  • PDF

트랙터용 토로이달 무단변속기 제어시스템 개발(I) - 제어시스템 시뮬레이션 - (Development of a Toroidal CVT Controller for Agricultural Tractor (I) - Simulation for control system -)

  • 김효중;류관희
    • Journal of Biosystems Engineering
    • /
    • 제29권5호
    • /
    • pp.395-406
    • /
    • 2004
  • Most of tractors in the world have manual gear transmission, and some of small tractors have hydrostatic trans-mission(HST). Since the HST is expensive and has low power efficiency, it is being used for only small garden tractors. The continuously variable transmission(CVT) is an alternative to the HST or power-shift gear transmissions. The driver of the CVT tractor doesn't have to operate a shift lever since the CVT controller automatically controls the speed of tractor. Thus, it is much easier to operate the CVT tractor. For the easy and stable control of the CVT tractor, an appropriate control algorithm should be developed and the dynamic modeling should be carried out before making the prototype of CVT controller. This study was conducted to develop a simulation model of the CVT control system needed to develop a PID control algorithm. The simulation model consisted of variator dynamics, hydraulic system and control computer. And the simulation model was verified by experiment. The results obtained in this study can be utilized in the design of CVT tractors for practical use, but a lot of field tests and improvement of softwares would be necessary.

자동변속기 록업솔레노이드밸브의 압력제어 (Pressure Control of Lockup Solenoid Valve for Automatic Transmission)

  • Park, Kwan-su-;Chung, Soon-Bae;Lee, Kyo-Il-
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.472-477
    • /
    • 1994
  • The lockup clutch is embeded on torque converter of automatic transmission to prevent the efficiency deterioration of torque converter in high speed. For improving fuel consumption rate, it is desirable to engage the lockup clutch earlier. But, it results in degrading shift quality, due to the transient torque. The transient clutch pressure which affects the shifting quality, should be controlled properly. In this study, to solve the problem, it is analysed the hydraulic circuit of lockup system including line pressure regulating circuit, established the nonlinear model, and designed the PID controller. The line pressure is supplied to the lockup clutch through the lockup control valve by switching the lockup solenoid valve on. In order to control the transient pressure actively, it is needed to control the lockup solenoid valve by closed loop control. The lockup solenoid valve is 2-way on-off valve, and is adequate for PWM control. To reduce the pressure chattering, the carrier frequency is increased. Target pressure profile is computed from optimized velocity difference profile throuth dynamic equation of vehicle system.

  • PDF

회생제동 전자제어 유압모듈을 이용한 하이브리드 차량의 에너지 회수 알고리즘 개발 (Development of Energy Regeneration Algorithm using Electro-Hydraulic Braking Module for Hybrid Electric Vehicles)

  • 여훈;김현수;황성호
    • 유공압시스템학회논문집
    • /
    • 제5권4호
    • /
    • pp.1-9
    • /
    • 2008
  • In this paper, an energy regeneration algorithm is proposed to make the maximum use of the regenerative braking energy for a parallel hybrid electric vehicle(HEV) equipped with a continuous variable transmission(CVT). The regenerative algorithm is developed by considering the battery state of charge(SOC), vehicle velocity and motor capacity. The hydraulic module consists of a reducing valve and a power unit to supply the front wheel brake pressure according to the control algorithm. In order to evaluate the performance of the regenerative braking algorithm and the hydraulic module, a hardware-in-the-loop simulation (HILS) is performed. In the HILS system, the brake system consists of four wheel brakes and the hydraulic module. Dynamic characteristics of the HEV are simulated using an HEV simulator. In the HEV simulator, each element of the HEV powertrain such as internal combustion engine, motor, battery and CVT is modelled using MATLAB/$Simulink^{(R)}$. In the HILS, a driver operates the brake pedal with his or her foot while the vehicle speed is displayed on the monitor in real time. It is found from the HILS that the regenerative braking algorithm and the hydraulic module suggested in this paper provide a satisfactory braking performance in tracking the driving schedule and maintaining the battery state of charge.

  • PDF

스쿨 존에서 운전자의 승차감을 수반한 차량 감속 제어에 관한 연구 (Study on Vehicle Deceleration Control in School Zones by Taking Driver's Comfort into Account)

  • 조효승;김형석;이병룡
    • 대한기계학회논문집A
    • /
    • 제34권10호
    • /
    • pp.1359-1366
    • /
    • 2010
  • 최근 많은 전자제어기술이 개발되고 있으며 또한 차량에 적용되고 있다. 이러한 기술들 중 throttle-by-wire, brake-by-wire, steer-by-wire 와 같은 X-by-wire 가 대표적이며 이는 기계적으로 연결된 부분이 전기적인 신호나 액추에이터로 대체된 것이다. 본 논문에서는 스쿨존에서의 차량의 속도 제어를 위하여 throttle-by-wire, brake-by-wire 가 고려되었으며 특히 스쿨 존에서는 다른 지역에 비해 사고가능성이 높다. 그 이유는 보행자가 횡단 시에 다수의 운전자들이 규정속도를 지키지 않기 때문이다. 따라서 본 논문에서는 스쿨 존에서 규정속도 내로 주행하도록 throttle-by-wire, brake-by-wire 를 이용하여 차량을 감속 제어하였으며 이를 위하여 양산차량의 엔진과 변속기의 제원을 사용하였다. 둘째, 차량의 감속에 있어서 운전자와 승객이 불쾌감을 느낄 수 있는 급격한 감속을 줄이기 위하여 제안된 3 차 궤적 추종법을 적용시켰으며 궤적 추종을 위하여 퍼지-PID 제어를 사용하였다. 마지막으로 시뮬레이션을 통하여 제안된 차량의 감속 제어 시스템의 성능을 확인하였다.

기어 치형의 미성형 구간 최소화를 위한 배압 냉간 단조 성형 해석 (Back-pressure cold forging analysis to minimize non-forming area of gear teeth)

  • 이용우;김장훈;권종호
    • 한국산학기술학회논문지
    • /
    • 제17권7호
    • /
    • pp.256-262
    • /
    • 2016
  • 본 연구에서는 자동차 자동변속기의 핵심 부품인 아웃풋 허브 및 리액션 허브의 치형 미성형 구간의 최소화를 위한 배압 냉간 단조 성형 공법에 대한 유한요소해석을 수행하였다. 변위제어해석으로 펀치 하중 및 슬리브 배압력을 도출하였고, 도출된 하중 및 배압력을 이용한 하중제어해석을 수행하여 상호 검증을 하였다. 변위제어해석과 하중제어해석이 유사한 경향을 보였으며, 아웃풋 허브와 리액션 허브의 미성형 구간을 기준 이하로 만족시키기 위한 펀치 하중과 슬리브 배압력을 구하였다. 리액션 허브의 펀치 하중이 아웃풋 허브 보다 큰 이유는 상부 치형 가공 시 리액션 허브의 단면감소율이 아웃풋 허브 보다 크기 때문인 것으로 판단되며, 슬리브 배압력이 아웃풋허브와 리액션 허브에서 차이가 나는 것 또한 슬리브 단면적의 차이에 기인한 것으로 판단된다. 본 연구에서 제시한 배압 냉간 단조 성형 해석 과정과 결과를 적용한 실제 치형 가공의 미성형 구간 결과와 비교하여 검증 평가하였으며, 치형 제품의 품질 개선 및 생산성 향상을 위해 요구되는 성형가공 조건을 도출하는데 유용하게 활용될 수 있을 것이다.

임베디드 시스템을 이용한 CVT 유압시스템 제어 (A Control of CVT Hydraulic System using Embedded System)

  • 한기원;류완식;장인규;전재욱;김현수;황성호
    • 유공압시스템학회논문집
    • /
    • 제4권1호
    • /
    • pp.18-24
    • /
    • 2007
  • The continuously variable transmission (CVT) of which speed ratio can change continuously in a fixed range has the benefits of low fuel consumption and exhaust gas because it enables the engine of a vehicle to operate in a high efficiency range regardless of vehicle speed. The speed ratio of belt type CVT is controlled by adjusting line pressure. The one of the line pressure control methods, mechanical-hydraulic control is usually adopting VDT's control method, in which the secondary solenoid valve has two functions both a regulator and a line pressure controller. However, this control method could not show the high performance of CVT with optimal driving capability because of the limitation of simple control algorithm, and it could not gain market share sufficiently in spite of the advantage of CVT with low fuel consumption. On the other hand, the electro-hydraulic control method gives the enhancement of power performance and low fuel consumption by implementing various driving mode using the proportional control or PWM control. The key of CVT technique is to develop a control algorithm of the electro-hydraulic solenoid valve in order to implement the speed ratio efficiently. In this paper, the line pressure control algorithm is proposed and the hydraulic system is controlled using metal belt type CVT test rig and the embedded ECU platform.

  • PDF

트랙터용 토로이달 무단변속기 제어시스템 개발(II) - PID 콘트롤러 개발 - (Development of a Toroidal CVT Controller for Agricultural Tractor (II) - PID controller -)

  • 김효중;류관희
    • Journal of Biosystems Engineering
    • /
    • 제29권5호
    • /
    • pp.407-418
    • /
    • 2004
  • There are several different types of continuously variable transmission(CVT) such as toroidal drive, belt drive, hydrostatic drive, hydro-mechanical drive. The toroidal CVT is an alternative to the manual transmission, HST, power-shift gear trans-missions or other CVTs. The driver of the CVT tractor doesn't have to operate a shia lever since the CVT controller automatically controls the speed of tractor. Thus, it is much easier to operate the CVT tractor. The fuel efficiency of CVT tractor can be increased since the controller responds quickly to the change in external load on the wheel during field operation. This study was conducted to develop the hardwares and softwares for the toroidal CVT controller which control the variator and the range clutches. The hardware consisted of a measurement system, hydraulic system and computer. And the PID controller was developed using the simulation model of the CVT control system. Through the simulation, the control coefficients for the PID controller were selected. Finally, the performance of the CVT control system was evaluated by step response test and torque response test. The settling time of the CVT control system appeared to be fast enough for field operations.