• Title/Summary/Keyword: 벨트하중

Search Result 16, Processing Time 0.455 seconds

A Study on the Inside Contact Characteristics Between Abrasive Belt and Pulley (연삭 벨트-풀리간의 내접촉 특성에 대한 연구)

  • 김현수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.457-465
    • /
    • 1988
  • The inside contact characteristics in abrasive belt drives were investigated analytically and experimentally for (1) driver pulley contact wheel and (2) driven pulley contact wheel. The concentrated contact forces in the grinding zone divided the entire belt-pulley contact are by three distinct areas and the tangential friction forces in the active areas caused the normal forces to change, which resulted in the different belt force distribution compared with those of the ordinary flat belt drives. The experimental results for the normal pressure (belt tension) distribution were in good agreement with the theoretical results.

Belt Tension Distribution for Belt Contact Abrasive Belt Drive (벨트접촉식 연삭 벨트구동의 벨트 장력 분포)

  • 임영호;김현수;안효원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.837-846
    • /
    • 1989
  • Belt tension distribution for an abrasive blet grinding was investigated analytically and experimentally for (1) slack side and (2) tight side blet grinding. Classical Eytelwein equation was used to predict the belt tension distribution with dividing contact angles into (1) inactive and (2) active angles. General friction theory was modified based on the friction force between the belt and the support in the grinding contact area that was obtained by experiments. It was found that analytical results were in good agreement with the experimental results. Also, the tight side belt grinding was recommended since it could carry out more grinding load than that of slack side belt grinding.

Dynamic Analysis of Long Distance Belt Conveyor System (장거리 벨트 컨베이어 시스템의 동적거동 해석)

  • 김원진;박태건;이신섭
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.307-312
    • /
    • 1995
  • 장거리 시스템의 경우에 있어서 기동과 정지 시의 동적하중은 구동부 입력크기의 변화와 구동부간이 기동 시간차이로부터 발생되며, 벨트로 전파되어 장력변화를 일으키고, 과도한 장력의 변화는 인장과 압축의 탄성파로 벨트요소의 응력을 증가시키며, 벨트, 풀리, 아이들러(idler)등의 벨트요소들을 파괴시킨다. 따라서 동적해석에 의한 설계가 필수적으로 요구되어 벨트의 동적거동 해석에 대한 연구가 많이 수행되고 있다. 본 연구에서는 벨트 컨베이어 시스템을 집중질량모델(lumped mass model)로 근사하여 모델링하는 방법을 도입하여 세부요소에 대한 운동방정식을 유도하고, 각 요소 모델링을 결합하여 전체 운동방정식을 수립하였으며, 예제 시스템에 적용하여 동적거동을 해석하였다. 예제 시스템에 있어서 기동시의 구동입력을 두 가지 형태의 입력을 이용하였고, 정지시에는 구동부 브레이크가 없는 경우로 정상운전상태에서 순간적으로 구동부의 동력을 제거하는 방법을 적용하였다. 시뮬레이션 결과를 통하여 기동시의 구동입력을 적절히 제어하므로 벨트 속도와 장력의 변화를 줄일 수 있는 입력형태를 결정할 수 있었고, 이 때의 테이크업의 운동도 구할 수 있었다.

  • PDF

Prediction of Thoracic Injury of Older Occupant from Belt Loading (벨트 하중에 따른 고령운전자의 흉곽 상해 예측)

  • Han, In-Seok;Kim, Young-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.799-806
    • /
    • 2009
  • Thoracic injury from restraint loading is the principle causative factor of death, which was shown to be particularly significant for older drivers. To characterize thoracic response to belt loading of older drivers, detailed finite element models of the adult and aged thorax were developed. The geometry of the 50th percentile adult male was chosen for the adult FE model. The thoracic FE model was validated against data obtained from results of PMHS pendulum impact tests. The quantified patterns of age-related shape and well-established material changes were applied to the adult model to develop the aged model. Belt force and chest deflection were applied to the developed two types of models. Rib and clavicle fracture risk obviously increased in the aged model. This finding showed that larger rib angle and reduced material properties of the ribcage produced more higher risk of injury in the older driver.

Evaluation of Progressive Collapse Resisting Capacity ofMegacolumn and Outrigger System (초대형 기둥-아웃리거 시스템의 연쇄붕괴 저항성능 평가)

  • Park, Jun-Hee;Kim, Jin-Koo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.484-487
    • /
    • 2009
  • 초고층구조물의 경우 중저층 구조물과 다르게 설계시 중력하중과 풍하중의 크기가 매우 크므로 이를 제어하는 구조물의 코어에 강성이 큰 전단벽을 설치하고 최상층에 아웃리거나 벨트트러스를 설치하는 방법을 많이 적용한다. 그리고 홍콩의 IFC와 같이 초대형기둥과 아웃리거를 설치하여 횡하중에 저항하는 구조시스템도 제시되고 있다. 이러한 초고층구조물에서 연쇄붕괴가 발생할 경우 세계무역센터의 붕괴에서 나타나듯이 상상을 초월하는 피해를 초래할 수 있다. 따라서 본 연구에서는 이러한 초고층 구조시스템의 연쇄붕괴저항능력을 Pushdown해석을 이용하여 평가하였다.

  • PDF

Structural and Modal Analysis of Treadmill Roller (트레드밀 롤러의 구조/진동해석)

  • Lee Jong-Sun;Kim Ji-Hong
    • Proceedings of the KAIS Fall Conference
    • /
    • 2004.11a
    • /
    • pp.66-69
    • /
    • 2004
  • 본 논문에서는 트레드밀의 풀리 벨트를 통해 회전하는 앞 롤러와 러닝 벨트를 통해 회전하는 뒤 롤러의 경계조건과 하중조건을 적용하여 ANSYS로 구조해석을 수행하여, 변위(displacement), 응력 (stress), 변형률(strain)을 구하여 구조적 타당성을 검토하는데 있으며, 각각의 롤러를 모달해석을 통해 고유진동수(natural frequency)를 알아보고 얻어진 데이터 값을 통해 진동 발생 요소인 모터의 회전을 제어함으로서 공진(resonance) 현상을 피하는데 있다.

  • PDF

Performance analysis on the anti-over load clutch for a smart seat belt system (스마트 시트벨트 시스템용 과하중 방지 클러치의 성능 해석)

  • Heo, Wook;Kim, Seock-Hyun;Park, Doo-Yeon;Kim, Jung-Han;Lee, Youn-Bok;Kim, Do-Shik;Choi, In-Su
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.850-853
    • /
    • 2008
  • In the motorized retractor of the smart seat belt system, anti-overload clutch is a very important element to prevent the excessive belt tensional force. Anti-overload clutch is the essential device to protect drivers from chest damage by the excessive belt tension. It generates slipping motion under excessive webbing moment and the belt tensional force is limited below critical value. In this study, slipping mechanism in the antioverload clutch is investigated by analysis and experiment. On the prototype model, finite element analysis is performed to identify the slipping condition and to determine the critical load. Analysis result is compared with the experimental result and the validity of the analysis model is verified. The purpose of the study is to provide the analytical background for the systematic design of the anti-overload clutch mechanism.

  • PDF

타이밍 벨트구동에서 불완전 맞물림 이의 하중분포 해석

  • 김현수;여창기;이인환
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.54-63
    • /
    • 1992
  • Force distribution of incomplete meshing teeth for the OHC drive timing belt system is investigated analytically. Finite difference equations of the belt tension are derived based on the force equilibrium and the deformation of the belt tooth. From the numerical results, it is found that of the force distribution prior to the boundary point shows higher values compared with those of the complete meshing state and the force distribution after the boundary point shows lower values. Also, the magnitude of the incomplete meshing region increases as the rotational speed increases and the tight side belt tension decreases.

  • PDF

Efficient Dynamic Analysis of High-rise Buildings Having Belt Walls Connected by a Sky-Bridge (스카이브릿지로 연결된 벨트월이 있는 고층건물의 효율적인 동적해석)

  • Lee, Dong-Guen;Kim, Hyun-Su;Yang, Ah-Ram;Ko, Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.3
    • /
    • pp.231-242
    • /
    • 2009
  • In the design of a sky-bridge, repetitive boundary nonlinear time history analyses are required to accurately predict dynamic behaviors of the connected buildings because the connection systems of a sky-bridge usually have high nonlinearity. If a conventional finite element model for entire high-rise buildings is used for repetitive boundary nonlinear time history analyses, computational efforts could be significant. In this study, an equivalent cantilever model considering the belt-wall effect has been proposed for an efficient dynamic analysis and a performance evaluation of vibration control of high-rise buildings connected by a sky-bridge. To verify the accuracy and efficiency of the proposed equivalent model, boundary nonlinear time history analyses of 49- and 42-story example buildings connected by a sky-bridge have been performed for wind excitation. Based on the analytical results, it has been verified that the proposed equivalent model can provide accurate dynamic responses of building structures connected by a sky-bridge with significantly reduced computational efforts.

Optimization of Seat belt Load Limiter for Crashworthiness (안전벨트 충돌하중특성 최적화)

  • Seo, bo pil;Choi, sung chul;Kim, beom jung;Han, sung jun
    • Journal of Auto-vehicle Safety Association
    • /
    • v.3 no.2
    • /
    • pp.5-10
    • /
    • 2011
  • Under the full frontal crash event, seatbelt system is the most typical and primary restraint device that prevents the second impact between an occupant and vehicle interior parts by limiting the forward motion of an occupant in the vehicle occupant packaging space. Today's restraint systems typically include the three-point seat belt with the pretensioner and the load limiter. A pretensioner preemptively tightens the seat belts removing any slack between a passenger and belt webbing which leads to early restraint of a passenger. After that a load limiter controls level of belt load by releasing the belt webbing to reduce occupant injurys. In this study, load characteristics of load limiters are optimized by the computer simulation with a MADYMO model for a frontal impact against the rigid wall at 56kph and then we suggest performance requirements. We derived optimum load characteristic from the results using four vehicle simulation models represented by the vehicle. Based on the results, we suggest the performance from the results of the second optimization using the simulation considering the design and the standardization. Finally, the performance requirements is verified by the sled tests including the load limiter device for the full vehicle condition.