• Title/Summary/Keyword: 벤토나이트 포화

Search Result 35, Processing Time 0.025 seconds

Saturation Prediction of Bentonite Buffer in a Waste Disposal Repository (처분터널 내 벤토나이트 완충재 포화예측)

  • Kim, Jin-Seop;Lee, Chang-Soo;Jo, Won-Jin;Choi, Young-Chul;Choi, Heui-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.361-362
    • /
    • 2014
  • 본 연구의 목적은 벤토나이트 완충재를 처분공에 설치하였을 때 벤토나이트와 암반의 상호작용을 중심으로 이의 포화과정을 제대로 모사할 수 있는 지와, 현장암반의 절리가 수치해석 결과에 어떠한 영향을 미치는가를 파악하는 것이다. 유한차분 해석코드인 TOUGH2 코드를 이용하여 벤토나이트의 수리거동을 분석하였다. 해석결과 암반의 절리가 존재할 경우 완충재의 포화도는 상대적으로 매우 빠르게 진행되었으며, 벤토나이트의 높은 모세관 압력으로 인해 시간경과에 따라 주변암반의 포화도가 점진적으로 감소됨을 확인하였다.

  • PDF

Coupled T-H-M Processes Calculations in KENTEX Facility Used for Validation Test of a HLW Disposal System (고준위 방사성 폐기물 처분 시스템 실증 실험용 KENTEX 장치에서의 열-수리-역학 연동현상 해석)

  • Park Jeong-Hwa;Lee Jae-Owan;Kwon Sang-Ki;Cho Won-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.2
    • /
    • pp.117-131
    • /
    • 2006
  • A coupled T-H-M(Thermo-Hydro-Mechanical) analysis was carried out for KENTEX (KAERI Engineering-scale T-H-M Experiment for Engineered Barrier System), which is a facility for validating the coupled T-H-M behavior in the engineered barrier system of the Korean reference HLW(high-level waste) disposal system. The changes of temperature, water saturation, and stress were estimated based on the coupled T-H-M analysis, and the influence of the types of mechanical constitutive material laws was investigated by using elastic model, poroelastic model, and poroelastic-plastic model. The analysis was done using ABAQUS, which is a commercial finite element code for general purposes. From the analysis, it was observed that the temperature in the bentonite increased sharply for a couple of days after heating the heater and then slowly increased to a constant value. The temperatures at all locations were nearly at a steady state after about 37.5 days. In the steady state, the temperature was maintained at $90^{\circ}C$ at the interface between the heater and the bentonite and at about $70^{\circ}C$ at the interface between the bentonite and the confining cylinder. The variation of the water saturation with time in bentonite was almost same independent of the material laws used in the coupled T-H-M processes. By comparing the saturation change of T-H-M and that of H-M(Hydro-Mechanical) processes using elastic and poroelastic material mod31 respectively, it was found that the degree of saturation near the heater from T-H-M calculation was higher than that from the coupled H-M calculation mainly because of the thermal flux, which seemed to speed up the saturation. The stresses in three cases with different material laws were increased with time. By comparing the stress change in H-M calculation using poroelasetic and poroelasetic-plastic model, it was possible to conclude that the influence of saturation on the stress change is higher than the influence of temperature. It is, therefore, recommended to use a material law, which can model the elastic-plastic behavior of buffer, since the coupled T-H-M processes in buffer is affected by the variation of void ratio, thermal expansion, as well as swelling pressure.

  • PDF

A Study for Permeability as Mixing Ratio at Bentonite-mixed Soil (벤토나이트 혼합토의 혼합비에 따른 투수성 연구)

  • Ju Jae-Woo;Suh Kyeh-Won;Park Jong-Beom
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.1
    • /
    • pp.45-52
    • /
    • 2006
  • A theoretical equation, from which we can get a suitable ratio of bentonite at bentonite-mixed soil, was derived for desigri of the impermeable condition. Bentonite is a soil with great expansion property and it has the permeability lower than $1\times10^{-7}cm/sec$ in spite of its maximum expansion state. Accordingly if the void of soil is filled with the liquid of bentonite, water will flow only through the veid of bentonite liquid. And the permeability of bentonite-mixed soil will always satisfy the condition as impermeable zone. However, because it is very difficult to mix uniformly bentonite with soil, it is thought that the actual mixing ratio fur the impermeable zone will be grater than that by theoretical equation. Permeability tests were performed to check the equation and a modified equation was suggested from the experimental results.

Comparison of Some Physicochemical Properties and Adsorption of Organic Cations between Ca- and Na-bentonites (Ca-형 및 Na-형 벤토나이트의 제반 물성 및 유기양이온 흡착비교)

  • 고상모;김자영
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.243-257
    • /
    • 2002
  • Ca-type and Na-type bentonites show the great difference of some physicochemical properties. Na exchanged bentonite is mainly used for the foundry and construction materials in domestic utilization. This study tries to identify in detail the differences of some physicochemical properties and thermal properties between Ca-type and Na-type bentonites. Also the adsorption behavior and interlayer expansion for the HDTMA (Hexadecyltrimethylammonium) exchanged and CP (Cetylprydinium) exchanged Ca-type and Na-type bentonites were compared. Na-type bentonite shows the strong alkaline property, high viscosity and swelling compared to Ca-type bentonite. However, two types are very similar for the cation exchange capacity and MB (Methylene Blue) adsorption. The decomposition of adsorbed and interlayer water of Na-type bentonite is caused in the lower temperature than Ca-type bentonite. And Ca-type bentonite shows the decomposition of structural water in the lower temperature than Na-type bentonite. The interlayer expansion of montmorillonite resulted to the intercalation of HDTMA and CP into bentonite is so strongly caused from 12~15 $\AA$ to $40\AA$ (basal spacing). HDTMA-bentonite is almost expanded to $37~38\AA$ when 200% CEC equivalent amount of HDTMA is added, and CP-bentonite is fullly expanded to 40 $\AA$ in the 140% CEC equivalent amount of CP It means that CP causes the stronger interlayer expansion of montmorillonite and easier adsorption than HDTMA. Adsorption behaviors of CP into bentonite is so stable and continuously sorbed in the proportion to the treatment of amount until 200% of the CEC equivalents. CP-bentonite shows the same adsorption behavior regardless of Ca-type or Na-type montmorillonite.

An Analysis of the Water Saturation Processes in the Engineered Barrier of a High Level Radioactive Waste Disposal System (고준위폐기물처분시스템 공학적 방벽에서의 지하수 포화공정 해석)

  • Park, Jeong-Hwa;Lee, Jae-Owan;Kwon, Sang-Ki
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.1
    • /
    • pp.23-32
    • /
    • 2011
  • An engineering scale test, which is called KENTEX, was carried out to understand and to analyze the coupled thermal, hydrological and mechanical phenomena in the engineered barrier system(EBS) of Korean reference disposal system. Using the experimental data obtained from KENTEX, the water saturation processes in bentonite could be analyzed. From the comparison between the model calculation using ABAQUS and the experimental results, the difference of the water content between them in the unsaturating part was large because the drying phenomena due to moisture redistribution by the temperature gradient could not be included in the model. In the saturating part, the difference of the water content between them was decreased gradually and showed to be small in the full saturation. And the time of about 95% saturation could be estimated about 500 days from the model calculation and experimental results. Also it could be known that the moisture redistribution in the unsaturated part could not be affected on the saturation time of bentonite in the repository. Therefore, it is considered that this model could be used to quantitatively predict the water saturation time in bentonite as EBS for the disposal system.

Numerical simulation for variations of water saturation in bentonite buffer under the effect of a rock joint using the TOUGH2 code (TOUGH2 code를 이용한 처분장 절리암반 내 벤토나이트 완충재의 포화도 변화)

  • Kim, Jin-Seop;Cho, Won-Jin;Lee, Kyung-Soo;Choi, Heui-Joo;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.6
    • /
    • pp.575-593
    • /
    • 2012
  • This paper briefly introduces the scope and objectives of SKB Task 8, which is an international cooperative research project. In addition, the hydraulic behaviors of bentonite buffer focusing on the interactions between bentonite and a rock mass with a joint were investigated using TOUGH2 code as part of a sub-mission of Task 8a. The effects of a rock joint and high capillary pressure of bentonite on the re-saturation properties and pressure distribution in a buffer were identified and successfully incorporated in the TOUGH2 code. Based on the numerical results, it was found that the speed of re-saturation in bentonite surrounded by a rock mass with a joint is 2.5 to 12 times faster than that in a condition without a rock joint, while the degree of saturation in the lower part of the buffer material is generally higher than in the upper part in both the cases of with and without a joint. It can be anticipated that the results obtained from this study can be applied to an estimation of the full saturation time and a determination of optimum thickness with regard to the design of the bentonite buffer in a high level waste disposal system.

Effect of Sodium Chloride on Stress-Deformation of Sand Bentonite Mixture (염분이 모래와 벤토나이트 혼합토의 응력 변형에 미치는 영향)

  • 안태봉
    • Geotechnical Engineering
    • /
    • v.13 no.2
    • /
    • pp.17-28
    • /
    • 1997
  • In this study sodium chloride solution is employed for chemicals, and several cylindrical triaxial tests are performed on the sand-bentonite mixtures saturated with sodium chloride solution. Deformation(elastic modulus, E) and strength(cohesion, c', and angle of friction, f') parameters are obtained from the triaxial tests as functions of confining pressure and sodium chloride solution concentrations. The results here indicate an increase in the value of effective cohesion with increase in the concentration of NaCl solution, which can be explained by using the Gouy-Chapman model. The value of the effective angle of shearing resistance does not show significant change with the increase in concentration of NaCl solution. The Young's modulus also increases with the increase in concentration of NaCl solution.

  • PDF

Determination of Water Content in Compacted Bentonite Using a Hygrometer and Its Application (습도계를 이용한 압축벤토나이트 내 함수율 결정 및 적용)

  • Lee, Jae-Owan;Cho, Won-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.2
    • /
    • pp.101-107
    • /
    • 2009
  • Investigation of resaturation and thermal-hydro-mechanical behavior for the buffer of a repository requires measuring the water content of compacted bentonite. This study investigated the relative humidity of compacted bentonites using a humidity sensor (Vaisala HMT 334) applicable under high temperature and pressure, and then conducted a multi-regression analysis based on the measured results to determine relationships among the water content, relative humidity, and temperature. The relationships for the compacted bentonites with the dry densities of 1,500 $kg/m^3$ and 1,600 $kg/m^3$ were expressed as ${\omega}=0.196RH-0.029T+1.391({r^2=0.96)}$ and ${\omega}=0.199RH-0.029T+2.596({r^2=0.98)}$, respectively. These were then used to interpret the resaturation of bentonite blocks in the KENTEX test.

  • PDF

Evaluation of Water Suction for the Compacted Bentonite Buffer Considering Temperature Variation (온도 변화를 고려한 압축 벤토나이트 완충재의 수분흡입력 평가)

  • Yoon, Seok;Go, Gyu-Hyun;Lee, Jae-Owan;Kim, Geon-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.11
    • /
    • pp.7-14
    • /
    • 2019
  • The compacted bentonite buffer is one of the major components of an engineered barrier system (EBS) for the disposal of high-level radioactive waste (HLW), and it is considered the best candidate for the buffer material. The buffer is located between disposal canisters and near-field rock mass, and it interrupts the release of radionuclide from disposal canisters and protect them from the penetration of groundwater. At initial disposal condition, degree of saturation of the compacted bentonite buffer decreases because of high thermal quantities released from the disposal canisters. However, the degree of saturation of the compacted bentonite buffer gradually increases caused by inflow of groundwater. The saturated and unsaturated behavior of the buffer is a very important input data since it can determine the safety performance of EBS. Therefore, this paper investigated water retention capacity (WRC) for the Korean compacted bentonite buffer. The WRC of the compacted bentonite buffer was derived by measuring volumetric water content and water suction when temperature variation was between 24℃~125℃ considering decrease of degree of saturation with respect to temperature increase. The WRC was also derived with the same volumetric water content under the room temperature condition, and it showed 1~15% larger water suction than high temperature condition.

Penetration of Compacted Bentonite into the Discontinuity in the Excavation Damaged Zone of Deposition Hole in the Geological Repository (심층처분장 처분공 주변 굴착손상영역에 존재하는 불연속면으로의 압축 벤토나이트 침투)

  • Lee, Changsoo;Cho, Won-Jin;Kim, Jin-Seop;Kim, Geon-Young
    • Tunnel and Underground Space
    • /
    • v.30 no.3
    • /
    • pp.193-213
    • /
    • 2020
  • A mathematical model to simulate more realistically the penetration of compacted bentonite buffer installed in the deposition hole into the discontinuity in the excavation damaged zone formed at the inner wall of the deposition hole in the geological repository for spent fuel is developed. In this model, the penetration of compacted bentonite is assumed to be the flow of Bingham fluid through the parallel planar rock fracture. The penetration of compacted bentonite is analyzed using the developed model. The results show that the maximum penetration depth of compacted bentonite into the rock fracture is proportioned to the swelling pressure of saturated compacted bentonite and the aperture of rock fracture. However, it is in inverse proportion to the yield strength of compacted bentonite. The viscosity of compacted bentonite dominates the penetration rate of compacted bentonite, but has no influence to the maximum penetration depth.