Comparison of Some Physicochemical Properties and Adsorption of Organic Cations between Ca- and Na-bentonites

Ca-형 및 Na-형 벤토나이트의 제반 물성 및 유기양이온 흡착비교

  • 고상모 (한국지질자원연구원 지질연구부) ;
  • 김자영 (한국지질자원연구원 지질연구부)
  • Published : 2002.12.01

Abstract

Ca-type and Na-type bentonites show the great difference of some physicochemical properties. Na exchanged bentonite is mainly used for the foundry and construction materials in domestic utilization. This study tries to identify in detail the differences of some physicochemical properties and thermal properties between Ca-type and Na-type bentonites. Also the adsorption behavior and interlayer expansion for the HDTMA (Hexadecyltrimethylammonium) exchanged and CP (Cetylprydinium) exchanged Ca-type and Na-type bentonites were compared. Na-type bentonite shows the strong alkaline property, high viscosity and swelling compared to Ca-type bentonite. However, two types are very similar for the cation exchange capacity and MB (Methylene Blue) adsorption. The decomposition of adsorbed and interlayer water of Na-type bentonite is caused in the lower temperature than Ca-type bentonite. And Ca-type bentonite shows the decomposition of structural water in the lower temperature than Na-type bentonite. The interlayer expansion of montmorillonite resulted to the intercalation of HDTMA and CP into bentonite is so strongly caused from 12~15 $\AA$ to $40\AA$ (basal spacing). HDTMA-bentonite is almost expanded to $37~38\AA$ when 200% CEC equivalent amount of HDTMA is added, and CP-bentonite is fullly expanded to 40 $\AA$ in the 140% CEC equivalent amount of CP It means that CP causes the stronger interlayer expansion of montmorillonite and easier adsorption than HDTMA. Adsorption behaviors of CP into bentonite is so stable and continuously sorbed in the proportion to the treatment of amount until 200% of the CEC equivalents. CP-bentonite shows the same adsorption behavior regardless of Ca-type or Na-type montmorillonite.

Ca-형과 Na-형 벤토나이트는 물성의 차이로 인하여 그 용도를 달리하며, 국내에서는 Ca-형 벤토나이트만 산출되기 때문에 산업체에서는 Na-형으로 변환시켜 토목용이나 주물용으로 활용되고 있다. 이 연구는 Ca-형과 Na-형 벤토나이트의 몇 가지 물성을 비교하여 그 차별성을 명확히 밝히고자 한다. 또한 HDTMA(Hexadecyltrimethylammonium)나 CP(Cetylprydinium)와 같은 유기양이온을 Ca-형과 Na-형 벤토나이트에 치환시켜 유기 양이온과 벤토나이트와의 흡착 특성을 비교 하고자 시도되었다. Na-형 벤토나이트는 Ca-형 벤토나이트에 비해 강한 알카리성, 매우 높은 팽윤성과 점도를 나타내나, 양이온 교환능과 MB(Methylene Blue) 흡착양은 변화를 보이지 않는다. 탁도는 Na-형 벤토나이트가 높으며 시간의 변화에 따라서도 거의 변화가 초래되지 않았으나, Ca-형 벤토나이트는 단시간 내 급격하게 응집이 초래되었다. 열 분석 결과 큰 차이는 보이지 않으나 흡착수와 층간수의 분해는 Na-형 벤토나이트가 보다 저온에서 빨리 일어나며, 완전한 구조의 분해는 Ca-형 벤토나이트가 Na-형 벤토나이트보다 저온에서 용이하게 일어났다. HDTMA와 CP를 벤토나이트에 치환케 되면 대체적으로 강한 층간팽창이 초래되어 저면 간격이 40 $\AA$ 이상 늘어남으로써 공간을 제공하여 연속적인 흡착이 초래되었다. HDTMA의 흡착은 양이온 교환능의 200% 이상을 치환하였을 때 거의 포화상태에 달하여 저면 간격이 $37~38\AA$으로 팽창이 초래되었으나, CP의 흡착은 양이온 교환능의 140% 이상을 치환케 되면 저면 간격이 $40\AA$에 달하여 거의 포화되었다. 이는 CP가 HDTMA보다 용이하게 층간팽창을 초래시키고 흡착이 일어남을 의미한다. CP와 Ca-형 및 Na-형 벤토나이트와의 흡착거동은 L형의 흡착등온선을 나타내었으며, 매우 규칙적이고 일관성 있게 흡착이 일어남으로써 안정한 상태를 유지하였다. 또한 층간 교환성 양이온 종에 관계없이 유기양이온 흡착거동은 거의 동일하게 일어났다.

Keywords

References

  1. 高木哲一,内藤-樹,고상모, 김문영 (2001) 일본 벤토나이트의 광상 및 공업현황. 광물과산업, 14, 9-17.
  2. 고상모, 손병국, 성민섭 (2002) 국내 벤토나이트의 물성과 그 요인에 관하여. 한국광물학회. 한국암석학회 공동학술발표회 요약집, 90-92.
  3. 문희수 (1995) 점토광물학, 민음사.
  4. 이상현, 방성완, 서전형(2000) 국내 벤토나이트의 각산업에서의 활용 및 그 현황. 제 1회 산업광물 심포지움 논문요약집, ‘벤토나이트 및 그 응용’ 중에서, 40-50.
  5. Alther, G.R. (1998) Organocl ay systems extend the life of activated carbon and membrane-based polishing systems by reducing or eliminating organic fouling . Industrial Wastewater.
  6. Baver, L.D. and Winterkorn , H.F. (1935) Sorption of liquid s by soil colloids (II). Soil Sci., 40, 403-419.
  7. Borchardt, G. (1989) Smectites. In: Dixon, J.B. and Weed, S.B. (eds.), Minerals in soil environments, Soil Sci . Soc. Arn., Book Series I, Madi son,Wiscon sin, USA, 675-718.
  8. Bors, J., Dultz, S., and Riebe, B. (2000) Organophilic bentonites as adsorbent s for radionuclides (I. Adsorption of ionic fission products). Appl. Clay Sci.,16,1-13.
  9. Boyd, SA, Lee J., and Mortl and, M.M. (1988a) Attenuating organ ic contaminant mob ility by soil mod ification. Nature, 333, 345-347.
  10. Boyd, S.A , Mortland, M.M., and Chiou C.T. (1988b) Sorption characteristic s of organic comp ounds on Hexadecy ltrimethy lammonium-smectite. Soil Sci . Soc. Am. J., 52, 652-657.
  11. Boyd, S.A., Shaobai, S., Lee, J., and Mortland, M.M. (1988c) Pentachlorophenol sorption by organoclays.Clays and Clay Minerals, 36, 125-130.
  12. Brixie J.M. and Boyd, S.A (1994) Treatment of contaminated soils with organoclays to reduce leach able pentachlorophenol (Organic chemicals in the environment). J. Environ. Qual ., 23, 1283-1290.
  13. Deng, Y. and Dixon J.B. (2002) Soil Organic matter and organic-mineral interactions. In: Dixon, J.B.and Schulze, D.G. (eds.), Soil Mineralogy with Environmental Applications, Soil Sci. Soc. Am.,Book Series 7, Madison, Wisconsin, USA, 69-107.
  14. Dultz, S. and Bors, J. (2000) Organophilic bentonites as adsorbents for rad ionuclides (II. Chemical and mineralogical properties of HDPy-montmorillonite.) Appl. Clay Sci., 16, 15-29.
  15. Jaynes, W.F. and Boyd, S.A. (1991) Clay mineral type and organic compound sorption by hexadecyltrimeth ylammonium-exchanged clays. Soil Sci. Soc. Am. J., 55, 43-48.
  16. Jaynes, W.F. and Vance, G.F. (1996) BTEX sorption by organo-c1ays: cosorptive enhancement and equivalence of interlayer complexes. Soil Sci. Soc. Am. J., 60, 1742-1749.
  17. Johnston, C.T. (1996) Sorption of organic compounds on clay mineral s: A surface functional group approach. In: Sawhney, B.L. (ed.), Organic pollutants in the environment, ems work shop lectures, 8, The Clay Minerals Society, Boulder, CO, USA,2-44.
  18. Koh, S.M. and Dixon, J.B. (2001) Praparation and application of organo-minerals as sorbents of phenol, benzene and toluene. Appl. Clay Sci., 18,111-122.
  19. Lagaly, G. and Weiss, A. (1969) Determination of the clay charge in mica-type layer silicates. In: Proc. Int. Clay Conf. Tokyo, I, 61-80.
  20. Lawrence, M.A.M ., Kukkadapu, R.K., and Boyd,S.A. (1998) Adsorption of phenol and chlorinated phenol s form aqueou s solution by tetrad-ecylammonium- and tertramethylphosphonium-exchanged montmorillonite. Appl. Clay Sci., 13, 13-20.
  21. Lee J., Mortland, M.M., Chiou, C.T., Kile, D.E., and Boyd, S.A. (1990) Adsorption of benzene, toluene, and xylene by two tetramethylammonium-smectites having different charge densities. Clays and Clay Minerals,38,113-120 .
  22. Mc Bride, M.B. (1989) Surface chemistry of soil minerals. In: Dixon, J.B. and Weed, S.B. (eds.), Mineral s in soil environments, Soil Sci. Soc. Arn., Book Series I, Madison, Wisconsin, USA, 35-88.
  23. Montgomery, D.M., Sollars, C.J. Sheriff, T.S., and Perry, R. (1988) Organophilic clays for the successful stabilization/solidification of problematic industrial wastes. Environ. Technol. Lett., 9,1403-1412.
  24. Mortland, M.M. (1970) Clay-organic complexes and interactions. In: Advances in agronomy, 12. 75-117. https://doi.org/10.1016/S0065-2113(08)60266-7
  25. Mortland, M.M., Shaobai, S., and Boyd, SA (1986) Clay-organic complexes as adsorbents for phenol and chlorophenols. Clays and Clay Minerals, 34,581-585.
  26. Paterson, E. and Swaffield, R. (1987) Thermal analysis. In: Wilson, M.J. (ed.), A handbook of determinative method s in clay mineralogy, Blackie,99-132.
  27. Sheriff, T.S., Sollars, C.J., Montgomery, D., and Perry, R. (1987) Modified clays for organic waste disposal. Environ. Tcchnol, I.ctt., 8, 501-514.
  28. Smith. J.A. and Jaffe, P.R. (1994) Adsorptive selectivity of organic-cation -modified bentonite for nonionic organic contaminants. Water, Air and Soil Pollution, 72. 205-211.
  29. Srinivasan, K.R., Fogler, H.S., Nolan, T., and Schultz (1985) The removal or trace levels or dioxins from water by sorption on modified clay. Environ. Progress, 4, 239-244.
  30. Srinivasan. K.R. and Fogler, II.S. (1989) Usc or modified clays for the removal and disposal of chlorinated dioxins and other priority pollutants form industrial waste waters. Cosrnoshere, 18,333-342.