• Title/Summary/Keyword: 벡터 이미지

Search Result 365, Processing Time 0.026 seconds

Improved Bag of Visual Words Image Classification Using the Process of Feature, Color and Texture Information (특징, 색상 및 텍스처 정보의 가공을 이용한 Bag of Visual Words 이미지 자동 분류)

  • Park, Chan-hyeok;Kwon, Hyuk-shin;Kang, Seok-hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.79-82
    • /
    • 2015
  • Bag of visual words(BoVW) is one of the image classification and retrieval methods, using feature point that automatical sorting and searching system by image feature vector of data base. The existing method using feature point shall search or classify the image that user unwanted. To solve this weakness, when comprise the words, include not only feature point but color information that express overall mood of image or texture information that express repeated pattern. It makes various searching possible. At the test, you could see the result compared between classified image using the words that have only feature point and another image that added color and texture information. New method leads to accuracy of 80~90%.

  • PDF

Genetic lesion matching algorithm using medical image (의료영상 이미지를 이용한 유전병변 정합 알고리즘)

  • Cho, Young-bok;Woo, Sung-Hee;Lee, Sang-Ho;Han, Chang-Su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.5
    • /
    • pp.960-966
    • /
    • 2017
  • In this paper, we proposed an algorithm that can extract lesion by inputting a medical image. Feature points are extracted using SIFT algorithm to extract genetic training of medical image. To increase the intensity of the feature points, the input image and that raining image are matched using vector similarity and the lesion is extracted. The vector similarity match can quickly lead to lesions. Since the direction vector is generated from the local feature point pair, the direction itself only shows the local feature, but it has the advantage of comparing the similarity between the other vectors existing between the two images and expanding to the global feature. The experimental results show that the lesion matching error rate is 1.02% and the processing speed is improved by about 40% compared to the case of not using the feature point intensity information.

A Multi-domain Style Transfer by Modified Generator of GAN

  • Lee, Geum-Boon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.7
    • /
    • pp.27-33
    • /
    • 2022
  • In this paper, we propose a novel generator architecture for multi-domain style transfer method not an image to image translation, as a method of generating a styled image by transfering a style to the content image. A latent vector and Gaussian noises are added to the generator of GAN so that a high quality image is generated while considering the characteristics of various data distributions for each domain and preserving the features of the content data. With the generator architecture of the proposed GAN, networks are configured and presented so that the content image can learn the styles for each domain well, and it is applied to the domain composed of images of the four seasons to show the high resolution style transfer results.

A Motion Estimation Method Using a New Cost Function for Frame Rate Up Conversion (프레임 율 변환을 위한 새로운 비용함수를 사용한 움직임 추정 기법)

  • Lee, Hanee;Choi, Dooseop;Wee, Seounghyun;Kim, Taejeong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.613-616
    • /
    • 2010
  • 본 논문에서는 새로운 움직임 추정(motion estimation, ME) 방식을 사용한 프레임 비율 변환(frame rate conversion, FRC) 기법에 대해 제안한다. 기존의 프레임 비율 변환을 위한 움직임 추정 방식은 영상 압축에서 사용되고 있는 SAD를 사용하여 블록(block) 단위로 움직임 벡터를 추정하는 방식에 기초를 두고 있다. 그러나 잔여 신호(residual signal)를 저장하는 영상 압축과 달리, 잘못된 움직임 추정은 합성된 출력 영상에서 심각한 품질 저하를 가져올 수 있다. 이를 보완하기 위해 움직임 개선(motion refinement, MR)이 사용되고 있지만, 근본적인 해결을 위해서는 정확한 움직임 추정 알고리즘 사용이 필요하다. 특히 SAD를 통한 움직임 추정은 고르지 못한 움직임 벡터장(motion vector field, MVF)을 형성할 수 있으며, 종래의 연구에서 이를 해결하기 위해 SAD(sum of absolute difference)에 벡터의 공간제약(spatial constraint) 항목을 추가하여 비교적 고른 움직임 벡터장을 형성하는 방식이 제시되었다. SAD와 공간 제약 항목의 반영 비율에 따라 움직임 벡터의 중요성과 움직임 벡터장의 일관성이 서로 상충하는데, 기존의 방식은 이 비율을 일정한 상수(constant)값을 사용하고 있으며, 이러한 방식은 이미지의 특성에 따라 결과가 달라진다. 본 논문에서는 SAD와 공간 제약 항목 사이의 반영 비율을 이미지의 특성에 적응하는 방식을 사용하는 움직임 예측을 제시하고, 수행한 결과를 기존의 방식에 의한 결과와 비교하였다.

Hypergraph model based Scene Image Classification Method (하이퍼그래프 모델 기반의 장면 이미지 분류 기법)

  • Choi, Sun-Wook;Lee, Chong Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.166-172
    • /
    • 2014
  • Image classification is an important problem in computer vision. However, it is a very challenging problem due to the variability, ambiguity and scale change that exists in images. In this paper, we propose a method of a hypergraph based modeling can consider the higher-order relationships of semantic attributes of a scene image and apply it to a scene image classification. In order to generate the hypergraph optimized for specific scene category, we propose a novel search method based on a probabilistic subspace method and also propose a method to aggregate the expression values of the member semantic attributes that belongs to the searched subsets based on a linear transformation method via likelihood based estimation. To verify the superiority of the proposed method, we showed that the discrimination power of the feature vector generated by the proposed method is better than existing methods through experiments. And also, in a scene classification experiment, the proposed method shows a competitive classification performance compared with the conventional methods.

Two-stage Content-based Image Retrieval Using the Dimensionality Condensation of Feature Vector (특징벡터의 차원축약 기법을 이용한 2단계 내용기반 이미지검색 시스템)

  • 조정원;최병욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.7C
    • /
    • pp.719-725
    • /
    • 2003
  • The content-based image retrieval system extracts features of color, shape and texture from raw images, and builds the database with those features in the indexing process. The search in the whole retrieval system is defined as a process which finds images that have large similarity to query image using the feature database. This paper proposes a new two-stage search method in the content-based image retrieval system. The method is that the features are condensed and stored by the property of Cauchy-Schwartz inequality in order to reduce the similarity computation time which takes a mostly response time from entering a query to getting retrieval results. By the extensive computer simulations, we have observed that the proposed two-stage search method successfully reduces the similarity computation time while maintaining the same retrieval relevance as the conventional exhaustive search method. We also have observed that the method is more effective as the number of images and dimensions of the feature space increase.

A Face Verification using Iterative Light Enhancement in Low Light Environment (저조도 환경에서의 반복적 조도 향상을 이용한 얼굴 검증)

  • Lee, Sanghoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.1222-1225
    • /
    • 2022
  • 본 논문에서는 저조도 환경에서 촬영된 영상의 조도를 개선하여 얼굴 검증 정확도를 높이는 방법을 제안하였다. 입력 이미지의 조도 개선을 통해 얼굴 검출 정확도를 개선하며, 검출된 얼굴의 반복적인 조도 향상을 통해 생성된 다수의 특징 벡터를 이용하여 얼굴 검증에 이용하였다. 얼굴 검출 및 검증 정확도 측정을 위해 K-FACE 데이터셋을 이용하였다. 저조도 환경에서 촬영된 검증 이미지에 대하여, 제안하는 특징 벡터 합성 방법으로 인해, 동일인 쌍 및 타인 쌍의 유사도 점수 분포의 표준 편차가 줄어드는 경향을 확인했으며, 이로 인해 검증 성능이 높아지는 결과를 얻었다.

  • PDF

Face Recognition System Using Gray Color Features (흑백 색상 정보 특징을 이용한 얼굴 인식 시스템)

  • 이현순;오동수;유관우
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.583-585
    • /
    • 2002
  • 얼굴 인식은 이미지에 대한 많은 변화(표정, 조명, 얼굴의 방향)로 인해 높은 인식률을 얻기 어렵다. 이 문제를 해결하기 위해, 여러 가지의 얼굴 인식에 관한 방법이 연구되었다. 본 논문은 윤곽선이 검출된 흑백 이미지에서 명암 정보를 이용하여 특징을 추출한 얼굴 인식 시스템을 구현한다. 얼굴 방향에 대해 제약조건을 지닌 정면의 얼굴 이미지에서 소벨 마스크(Sobel Mask)를 이용하여 추출한 윤곽선 이미지를 일정한 크기의 영역들을 구성하여 특징벡터를 생성한다. 생성된 특징벡터를 이용하여 빠른 속도로 얼굴의 특징을 추출하여 개인 정보를 생성할 수 있다. 개인 정보를 가지고 SVM(Support Vector Machine)을 이용하여 일대일 대응에서 인증을 실험한다. 이 시스템은 기하학적 특성 추출 방법보다 계산량이 적고, 높은 인식률을 보여준다.

  • PDF

Geometry Image Optimization using a Normal Vector (정점의 법선벡터를 이용한 기하이미지의 최적화)

  • Park Jong-Lae;Yang Sung-Bong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.11a
    • /
    • pp.241-244
    • /
    • 2004
  • 일반적으로 메쉬(mesh)는 비정규 연결 형태(irregular connectivity)로 되어 있다. 리메싱(remeshing)은 비정규 연결 형태의 메쉬를 정규 연결 형태(regular connectivity)로 바꾸어 주는 작업이다. 메쉬의 기하 정보가 2D 그리드에 저장이 되어 있는 기하이미지(geometry Images)는 비정규 연결 형태의 메쉬를 완전 정규 형태(completely regular connectivity)로 리메싱하는 데 사용된다. 원본 메쉬를 기하 이미지로 생성하는 방법은 변형되는 크기를 최소화 하는 스트레치 메트릭(stretch metric)을 기반으로 이루어 졌다. 이 방법은 리메싱된 메쉬의 언더샘플링(undersampling)을 줄여 주게 된다. 하지만 리메싱 과정에서 생기는 오버샘플링(oversampling)은 줄여 주지 못한다. 본 논문에서는 정점(vertex)의 법선 벡터(normal vector)를 이용하여 기하이미지의 오버샘플링을 줄이는 방법을 제시한다.

  • PDF

A Study of Fusion Image System and Simulation based on Mutual Information (상호정보량에 의한 이미지 융합시스템 및 시뮬레이션에 관한 연구)

  • Kim, Yonggil;Kim, Chul;Moon, Kyungil
    • Journal of The Korean Association of Information Education
    • /
    • v.19 no.1
    • /
    • pp.139-148
    • /
    • 2015
  • The purpose of image fusion is to combine the relevant information from a set of images into a single image, where the resultant fused image will be more informative and complete than any of the input images. Image fusion techniques can improve the quality and increase the application of these data important applications of the fusion of images include medical imaging, remote sensing, and robotics. In this paper, we suggest a new method to generate a fusion image using the close relation of image features obtained through maximum entropy threshold and mutual information. This method represents a good image registration in case of using a blurring image than other image fusion methods.