성공적인 상업화를 위해서는 다양한 조명 환경에서 신뢰성 있는 얼굴 인식이 필요하다. 특징 벡터 기반 얼굴 인식에서 특징 벡터를 잘 선택하는 것은 중요하다. 가버 특징 벡터는 다른 특징 벡터보다도 상대적으로 방향, 자세, 조명 등의 영향을 덜 받는 것으로 잘 알려져 있어 얼굴 인식의 특징 벡터로 많이 이용된다. 그러나 조명의 영향에 대해 완전히 독립적이지 못하다. 본 논문에서는 얼굴 이미지의 가버 특징 벡터에 대한 조명 PCA 모델의 구성을 제안하고 이를 이용하여 조명에 독립적인 얼굴 고유의 특성을 나타내는 가버 특징 벡터만을 분리해내고 이를 이용한 얼굴 인식 방법을 제시한다. 가버 특징 벡터 조명 PCA 모델은 가버 특징 벡터공간을 조명 영향 부분공간과 얼굴 고유특성 부분공간의 직교 분해로 구성한다. 얼굴 고유특성 부분공간으로 투영하여 얻어진 가버 특징 벡터는 조명 영향을 분리해 내었기 때문에 이를 이용한 얼굴 인식은 조명에 보다 강인하게 된다. 실험을 통해서 가버 특징 벡터 조명 PCA 모델을 이용한 제안된 얼굴 인식 방식이 다양한 자세에서 조명에 대해 보다 신뢰성 있게 동작함을 확인하였다.
컴뮤트 타임 임베딩을 구현하려면 그래프 라플라시안 행렬의 고유값과 고유벡터를 구하여야 하는데, $o(n^3)$의 계산량이 요구되어 대용량 데이터에는 적용하기 어려운 문제가 있다. 이를 줄이기 위하여 표본화 과정을 통하여 크기가 줄어든 그래프 라플라시안 행렬에서 구한 다음, 원래의 고유값과 고유벡터를 근사화시키는 Nystr${\ddot{o}}$m 기법을 주로 채택한다. 이 과정에서 많은 오차가 발생하는데, 이를 개선하기 위하여 본 논문에서는 그래프 라플라시안 대신에 가중치 행렬을 표본화하고 이로부터 구한 고유값과 고유벡터를 그래프 라플라시안의 고유값과 고유벡터로 변환하는 기법을 이용하여 대용량 데이터로 구성된 스펙트럴 그래프를 근사적으로 컴뮤트 타임 임베딩하는 기법을 제안한다. 하지만, 이 방식도 스펙트럼 분해를 계산하여야 하므로 데이터의 크기가 증가하면 적용하기 어려운 문제가 발생한다. 이의 대안으로, 스펙트럼 분해를 계산하지 않고도 데이터 집합의 크기에 영향을 받지 않으면서 컴뮤트 타임을 근사적으로 계산하는 방식을 구현하고 이들의 특성을 실험적으로 분석한다.
언어모델(Language Model)을 구축하기 위한 딥러닝 기법인 LSTM의 경우 학습에 사용되는 말뭉치의 전처리 방식에 따라 그 결과가 달라진다. 본 연구에서는 유명한 문학작품(기형도의 시집)을 말뭉치로 사용하여 LSTM 모델을 학습시켰다. 원문을 그대로 사용하는 경우와 조사/어미 등을 삭제한 경우에 따라 상이한 단어벡터 세트를 각각 얻을 수 있다. 이러한 전처리 방식에 따른 유사도/유추 연산 결과, 단어벡터의 평면상의 위치 및 언어모델의 텍스트생성 결과를 비교분석했다. 문학작품을 말뭉치로 사용하는 경우, 전처리 방식에 따라 연산된 단어는 달라지지만, 단어들의 유사도가 높고 유추관계의 상관도가 높다는 것을 알 수 있었다. 평면상의 단어 위치 역시 달라지지만 원래의 맥락과 어긋나지 않았고, 생성된 텍스트는 원래의 분위기와 비슷하면서도 이색적인 작품으로 감상할 수 있었다. 이러한 분석을 통해 문학작품을 객관적이고 다채롭게 향유할 수 있는 수단으로 딥러닝 기법의 언어모델을 활용할 수 있다고 판단된다.
최근 자연어처리 연구로 지식 기반 대화에서 대화 내용에 자유로운 주제와 다양한 지식을 포함하는 연구가 활발히 이루어지고 있다. 지식 기반 대화는 대화 내용이 주어질 때 특정 지식 정보를 포함하여 이어질 응답을 생성한다. 이때 대화에 필요한 지식이 검색 가능하여 선택에 제약이 없는 오픈 도메인(Open-domain) 지식 기반 대화가 가능하도록 한다. 오픈 도메인 지식 기반 대화의 성능 향상을 위해서는 대화에 이어지는 자연스러운 답변을 연속적으로 생성하는 응답 생성 모델의 성능 뿐만 아니라, 내용에 어울리는 응답이 생성될 수 있도록 적합한 지식을 선택하는 지식 검색 모델의 성능 향상도 매우 중요하다. 본 논문에서는 오픈 도메인 지식 기반 한국어 대화에서 지식 검색 성능을 높이기 위해 밀집 벡터 기반 검색 방식과 주제어(Keyword) 기반의 검색 방식을 함께 사용하는 것을 제안하였다. 먼저 밀집 벡터 기반의 검색 모델을 학습하고 학습된 모델로부터 고난도 부정(Hard negative) 지식 후보를 생성하고 주제어 기반 검색 방식으로 고난도 부정 지식 후보를 생성하여 각각 밀집 벡터 기반의 검색 모델을 학습하였다. 성능을 측정하기 위해 전체 지식 중에서 하나의 지식을 검색했을 때 정답 지식인 경우를 계산하였고 고난도 부정 지식 후보로 학습한 주제어 기반 검색 모델의 성능이 6.175%로 가장 높은 것을 확인하였다.
본 논문은 자동차 오디오 시스템에 내장된 라디오에서 실시간으로 재생되는 연속적인 오디오 신호로부터 음악 신호를 선별하고, 해당 음악에 대한 실시간 음악장르 분류를 통해 자동으로 이퀄라이저를 조절하는 방식을 제안한다. 제안된 방식에서는 음악분류 정확도를 높이고 실시간 신호처리를 실행하기 위해 연속적인 오디오 신호로부터 추출한 음색 특징 벡터와 리듬 특징 벡터를 GMM (Gaussian mixture model) 분류 방식에 적용하여 음악 분류를 수행한다. 제안된 방식은 카오디오 시스템의 라디오로부터 출력된 오디오 신호로부터 분할된 다양한 오디오 구간을 5가지 음악장르로 분류하여 음악 장르 분류 성능을 측정하였다.
본 논문에서는 MPEG-7에 정의된 오디오 서술자를 이용한 오디오 특징을 기반으로 한 음악 검색 알고리즘을 제안한다. 특히 timbral 특징들은 음색 구분을 용이하게 할 수 있어 음악 검색뿐만 아니라 음악 장르 분류 또는 Query by humming에 이용 될 수 있다. 이러한 연구를 통하여 오디오 신호의 대표적인 특성을 표현 할 수 있는 특징벡터를 구성 할 수 있다면 추후에 멀티모달 시스템을 이용한 검색 알고리즘에도 오디오 특징으로 이용 될 수 있을 것이다 본 논문에서는 방송 시스템에 적용 할 수 있도록 검색 범위를 특정 컨텐츠의 O.S.T 앨범으로 제한하였다. 즉, 사용자가 임의로 선택한 부분적인 오디오 클립만을 이용하여 그 컨텐츠 전체의 O.S.T 앨범 내에서 음악을 검색할 수 있도록 하였다. 오디오 특징벡터를 구성하기 위한 MPEG-7 오디오 서술자의 조합 방법을 제안하고 distance 또는 ratio 계산 방식을 통해 성능 향상을 추구하였다. 또한 reference 음악의 템플릿 구성 방식의 변화를 통해 성능 향상을 추구하였다. Classifier로 k-NN 방식을 사용하여 성능 평가를 수행한 결과 timbral spectral feature들의 비율을 이용한 IFCR(Intra-Feature Component Ratio) 방식이 Euclidean distance 방식보다 우수한 성능을 보였다.
DVB-S2 (Digital Video Broadcasting - Satellite Version 2)와 같은 위성 통신 시스템은 낮은 신호 대 잡음 비 (SNR; Signal-to-Noise Ratio) 및 큰 주파수 오차에서의 동작이 요구되므로 인해 초기 프레임 동기 과정에서 강건한 프레임 동기 획득을 위한 상관 방식이 필요하다. 초기 프레임 동기 획득을 위해서는 기존의 다양한 상관 방식이 존재하며 채널 환경에 따라 이들 상관 방식은 각각 다른 특성 및 성능을 갖는다. 본 논문에서는 낮은 신호 대 잡음 비 영역 및 큰 주파수 오차 존재 하에서도 우수한 성능을 보이는 상관기 구조를 제시하고 그 성능을 분석 및 검증한다. 제안하는 상관 방식은 동기 수열 내에서 확장된 동기 심볼 거리에 대한 차등 상관의 크기 합과 벡터 합을 각각 이용하며, 계산된 상관값과 수신신호의 Euclidean 거리를 활용하므로써 수신 신호와 동기 수열의 상관도를 극대화하는 효과를 갖는다. 크기 합 상관 방식의 경우 4 dB 이하의 신호 대잡음 비에서 주파수 오차의 존재 유무에 관계없이 최대 우도 (ML; Maximum likelihood) 방식의 근사화를 통해 유도된 방식을 포함한 기존의 알려진 모든 상관 방식보다 향상된 오율을 가지며, 벡터 합 상관 방식은 주파수 오차 감소함에 따라 크기 합 상관 방식보다도 더욱 우수한 성능을 가진다.
H.264는 기존의 표준안들보다 좋은 성능을 내기 위해서 더 세밀하고, 더 많은 움직임 정보를 처리한다. 하지만, 움직임 벡터가 기존 표준안에 비해 높은 비율을 차지하게 되어 이에 대한 고려가 필요하게 되었다. 본 논문에서는 움직임 벡터를 효율적으로 처리하기 위해 단말 모드를 사용하는 새로운 방법을 제안한다. 제안하는 알고리즘은 단말 모드를 이용하여 모드들의 분포를 집중시키고, 더 적은 모드 종류를 이용하여 움직임 벡터의 압축을 수행한다. 본 논문에서 제시하는 알고리즘은 현재의 $4{\times}4$ 움직임 벡터 행렬 뿐만 아니라 $8{\times}8$ 행렬 등으로 확장시킬 수 있다. 제안하는 알고리즘은 헤더에서 12.68%, 전체 비트스트립에서 9.7%의 감소율을 보여준다.
본 논문에서는 움직임 벡터와 빛의 세기를 이용하여 비디오의 인덱싱과 검색 기법에 대하여 제안한다. 본 논문에서는 움직임 벡터의 특징과 빛의 세기를 계산하여 각 샷 당하나의 대표프레임을 추출하였다. 각각의 대표프레임은 빛의 흐름을 계산하였다. 즉 움직임벡터의 특징은 빛의 흐름으로부터 얻어냈고, BMA 는 움직임 벡터를 찾기 위해 사용했다. 그리고 빛의 세기 값을 히스토그램으로 변환 한 후 컷 검출에 사용하였다. 비디오 프레임의움직임 벡터와 빛의 세기 특징을 기반으로 비디오 데이터를 구성하고 인덱싱 하였다. 비디오 데이터베이스는 비디오의 접근을 위해 내용기반을 제공하고, 인덱스 특징은 B+ 트리 검색을 사용했고, 내부적으로 구성되어 단 노드 방식으로 저장되어 컴퓨터 저장장치에 직접 접근할 수 있게 했다. 본 논문에서는 비디오 데이터 모델을 기반으로 한 비디오 인덱스의 문제를 정의하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.