• 제목/요약/키워드: 벡터 방식

검색결과 953건 처리시간 0.023초

가버 특징 벡터 조명 PCA 모델 기반 강인한 얼굴 인식 (Robust Face Recognition based on Gabor Feature Vector illumination PCA Model)

  • 설태인;김상훈;정선태;조성원
    • 전자공학회논문지SC
    • /
    • 제45권6호
    • /
    • pp.67-76
    • /
    • 2008
  • 성공적인 상업화를 위해서는 다양한 조명 환경에서 신뢰성 있는 얼굴 인식이 필요하다. 특징 벡터 기반 얼굴 인식에서 특징 벡터를 잘 선택하는 것은 중요하다. 가버 특징 벡터는 다른 특징 벡터보다도 상대적으로 방향, 자세, 조명 등의 영향을 덜 받는 것으로 잘 알려져 있어 얼굴 인식의 특징 벡터로 많이 이용된다. 그러나 조명의 영향에 대해 완전히 독립적이지 못하다. 본 논문에서는 얼굴 이미지의 가버 특징 벡터에 대한 조명 PCA 모델의 구성을 제안하고 이를 이용하여 조명에 독립적인 얼굴 고유의 특성을 나타내는 가버 특징 벡터만을 분리해내고 이를 이용한 얼굴 인식 방법을 제시한다. 가버 특징 벡터 조명 PCA 모델은 가버 특징 벡터공간을 조명 영향 부분공간과 얼굴 고유특성 부분공간의 직교 분해로 구성한다. 얼굴 고유특성 부분공간으로 투영하여 얻어진 가버 특징 벡터는 조명 영향을 분리해 내었기 때문에 이를 이용한 얼굴 인식은 조명에 보다 강인하게 된다. 실험을 통해서 가버 특징 벡터 조명 PCA 모델을 이용한 제안된 얼굴 인식 방식이 다양한 자세에서 조명에 대해 보다 신뢰성 있게 동작함을 확인하였다.

대용량 컴뮤트 타임 임베딩을 위한 연산 속도 개선 방식 제안 (Proposing the Methods for Accelerating Computational Time of Large-Scale Commute Time Embedding)

  • 한희일
    • 전자공학회논문지
    • /
    • 제52권2호
    • /
    • pp.162-170
    • /
    • 2015
  • 컴뮤트 타임 임베딩을 구현하려면 그래프 라플라시안 행렬의 고유값과 고유벡터를 구하여야 하는데, $o(n^3)$의 계산량이 요구되어 대용량 데이터에는 적용하기 어려운 문제가 있다. 이를 줄이기 위하여 표본화 과정을 통하여 크기가 줄어든 그래프 라플라시안 행렬에서 구한 다음, 원래의 고유값과 고유벡터를 근사화시키는 Nystr${\ddot{o}}$m 기법을 주로 채택한다. 이 과정에서 많은 오차가 발생하는데, 이를 개선하기 위하여 본 논문에서는 그래프 라플라시안 대신에 가중치 행렬을 표본화하고 이로부터 구한 고유값과 고유벡터를 그래프 라플라시안의 고유값과 고유벡터로 변환하는 기법을 이용하여 대용량 데이터로 구성된 스펙트럴 그래프를 근사적으로 컴뮤트 타임 임베딩하는 기법을 제안한다. 하지만, 이 방식도 스펙트럼 분해를 계산하여야 하므로 데이터의 크기가 증가하면 적용하기 어려운 문제가 발생한다. 이의 대안으로, 스펙트럼 분해를 계산하지 않고도 데이터 집합의 크기에 영향을 받지 않으면서 컴뮤트 타임을 근사적으로 계산하는 방식을 구현하고 이들의 특성을 실험적으로 분석한다.

딥러닝을 위한 텍스트 전처리에 따른 단어벡터 분석의 차이 연구 (Study on Difference of Wordvectors Analysis Induced by Text Preprocessing for Deep Learning)

  • 고광호
    • 문화기술의 융합
    • /
    • 제8권5호
    • /
    • pp.489-495
    • /
    • 2022
  • 언어모델(Language Model)을 구축하기 위한 딥러닝 기법인 LSTM의 경우 학습에 사용되는 말뭉치의 전처리 방식에 따라 그 결과가 달라진다. 본 연구에서는 유명한 문학작품(기형도의 시집)을 말뭉치로 사용하여 LSTM 모델을 학습시켰다. 원문을 그대로 사용하는 경우와 조사/어미 등을 삭제한 경우에 따라 상이한 단어벡터 세트를 각각 얻을 수 있다. 이러한 전처리 방식에 따른 유사도/유추 연산 결과, 단어벡터의 평면상의 위치 및 언어모델의 텍스트생성 결과를 비교분석했다. 문학작품을 말뭉치로 사용하는 경우, 전처리 방식에 따라 연산된 단어는 달라지지만, 단어들의 유사도가 높고 유추관계의 상관도가 높다는 것을 알 수 있었다. 평면상의 단어 위치 역시 달라지지만 원래의 맥락과 어긋나지 않았고, 생성된 텍스트는 원래의 분위기와 비슷하면서도 이색적인 작품으로 감상할 수 있었다. 이러한 분석을 통해 문학작품을 객관적이고 다채롭게 향유할 수 있는 수단으로 딥러닝 기법의 언어모델을 활용할 수 있다고 판단된다.

BM25 기반 고난도 부정 지식 검색을 통한 오픈 도메인 지식 기반 한국어 대화의 지식 검색 모듈 성능 향상 (Improvement of Knowledge Retriever Performance of Open-domain Knowledge-Grounded Korean Dialogue through BM25-based Hard Negative Knowledge Retrieval)

  • 문선아;김산;신사임
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.125-130
    • /
    • 2022
  • 최근 자연어처리 연구로 지식 기반 대화에서 대화 내용에 자유로운 주제와 다양한 지식을 포함하는 연구가 활발히 이루어지고 있다. 지식 기반 대화는 대화 내용이 주어질 때 특정 지식 정보를 포함하여 이어질 응답을 생성한다. 이때 대화에 필요한 지식이 검색 가능하여 선택에 제약이 없는 오픈 도메인(Open-domain) 지식 기반 대화가 가능하도록 한다. 오픈 도메인 지식 기반 대화의 성능 향상을 위해서는 대화에 이어지는 자연스러운 답변을 연속적으로 생성하는 응답 생성 모델의 성능 뿐만 아니라, 내용에 어울리는 응답이 생성될 수 있도록 적합한 지식을 선택하는 지식 검색 모델의 성능 향상도 매우 중요하다. 본 논문에서는 오픈 도메인 지식 기반 한국어 대화에서 지식 검색 성능을 높이기 위해 밀집 벡터 기반 검색 방식과 주제어(Keyword) 기반의 검색 방식을 함께 사용하는 것을 제안하였다. 먼저 밀집 벡터 기반의 검색 모델을 학습하고 학습된 모델로부터 고난도 부정(Hard negative) 지식 후보를 생성하고 주제어 기반 검색 방식으로 고난도 부정 지식 후보를 생성하여 각각 밀집 벡터 기반의 검색 모델을 학습하였다. 성능을 측정하기 위해 전체 지식 중에서 하나의 지식을 검색했을 때 정답 지식인 경우를 계산하였고 고난도 부정 지식 후보로 학습한 주제어 기반 검색 모델의 성능이 6.175%로 가장 높은 것을 확인하였다.

  • PDF

음악 장르 분류를 이용한 자동차 오디오 시스템에서의 이퀄라이저 자동 조절 방식 (Automatic Equalizer Control Method Using Music Genre Classification in Automobile Audio System)

  • 김형국;남상순
    • 한국ITS학회 논문지
    • /
    • 제8권4호
    • /
    • pp.33-38
    • /
    • 2009
  • 본 논문은 자동차 오디오 시스템에 내장된 라디오에서 실시간으로 재생되는 연속적인 오디오 신호로부터 음악 신호를 선별하고, 해당 음악에 대한 실시간 음악장르 분류를 통해 자동으로 이퀄라이저를 조절하는 방식을 제안한다. 제안된 방식에서는 음악분류 정확도를 높이고 실시간 신호처리를 실행하기 위해 연속적인 오디오 신호로부터 추출한 음색 특징 벡터와 리듬 특징 벡터를 GMM (Gaussian mixture model) 분류 방식에 적용하여 음악 분류를 수행한다. 제안된 방식은 카오디오 시스템의 라디오로부터 출력된 오디오 신호로부터 분할된 다양한 오디오 구간을 5가지 음악장르로 분류하여 음악 장르 분류 성능을 측정하였다.

  • PDF

MPEG-7 오디오 하위 서술자를 이용한 음악 검색 방법에 관한 연구 (A Study on the Music Retrieval System using MPEG-7 Audio Low-Level Descriptors)

  • 박만수;박철의;김회린;강경옥
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2003년도 정기총회 및 학술대회
    • /
    • pp.215-218
    • /
    • 2003
  • 본 논문에서는 MPEG-7에 정의된 오디오 서술자를 이용한 오디오 특징을 기반으로 한 음악 검색 알고리즘을 제안한다. 특히 timbral 특징들은 음색 구분을 용이하게 할 수 있어 음악 검색뿐만 아니라 음악 장르 분류 또는 Query by humming에 이용 될 수 있다. 이러한 연구를 통하여 오디오 신호의 대표적인 특성을 표현 할 수 있는 특징벡터를 구성 할 수 있다면 추후에 멀티모달 시스템을 이용한 검색 알고리즘에도 오디오 특징으로 이용 될 수 있을 것이다 본 논문에서는 방송 시스템에 적용 할 수 있도록 검색 범위를 특정 컨텐츠의 O.S.T 앨범으로 제한하였다. 즉, 사용자가 임의로 선택한 부분적인 오디오 클립만을 이용하여 그 컨텐츠 전체의 O.S.T 앨범 내에서 음악을 검색할 수 있도록 하였다. 오디오 특징벡터를 구성하기 위한 MPEG-7 오디오 서술자의 조합 방법을 제안하고 distance 또는 ratio 계산 방식을 통해 성능 향상을 추구하였다. 또한 reference 음악의 템플릿 구성 방식의 변화를 통해 성능 향상을 추구하였다. Classifier로 k-NN 방식을 사용하여 성능 평가를 수행한 결과 timbral spectral feature들의 비율을 이용한 IFCR(Intra-Feature Component Ratio) 방식이 Euclidean distance 방식보다 우수한 성능을 보였다.

  • PDF

낮은 신호 대 잡음 비에서 강건한 프레임 동기를 위한 크기 합 상관 및 벡터 합 상관 방식의 성능 평가 (Performance of Magnitude Sum Correlation and Vector Sum Correlation Methods for Robust Frame Synchronization Under Low Signal-to-Noise Ratios)

  • 이동욱;김상태;성원진
    • 대한전자공학회논문지TC
    • /
    • 제45권7호
    • /
    • pp.32-37
    • /
    • 2008
  • DVB-S2 (Digital Video Broadcasting - Satellite Version 2)와 같은 위성 통신 시스템은 낮은 신호 대 잡음 비 (SNR; Signal-to-Noise Ratio) 및 큰 주파수 오차에서의 동작이 요구되므로 인해 초기 프레임 동기 과정에서 강건한 프레임 동기 획득을 위한 상관 방식이 필요하다. 초기 프레임 동기 획득을 위해서는 기존의 다양한 상관 방식이 존재하며 채널 환경에 따라 이들 상관 방식은 각각 다른 특성 및 성능을 갖는다. 본 논문에서는 낮은 신호 대 잡음 비 영역 및 큰 주파수 오차 존재 하에서도 우수한 성능을 보이는 상관기 구조를 제시하고 그 성능을 분석 및 검증한다. 제안하는 상관 방식은 동기 수열 내에서 확장된 동기 심볼 거리에 대한 차등 상관의 크기 합과 벡터 합을 각각 이용하며, 계산된 상관값과 수신신호의 Euclidean 거리를 활용하므로써 수신 신호와 동기 수열의 상관도를 극대화하는 효과를 갖는다. 크기 합 상관 방식의 경우 4 dB 이하의 신호 대잡음 비에서 주파수 오차의 존재 유무에 관계없이 최대 우도 (ML; Maximum likelihood) 방식의 근사화를 통해 유도된 방식을 포함한 기존의 알려진 모든 상관 방식보다 향상된 오율을 가지며, 벡터 합 상관 방식은 주파수 오차 감소함에 따라 크기 합 상관 방식보다도 더욱 우수한 성능을 가진다.

단말 모드 방식을 도입한 H.264의 움직임 벡터 압축 (Motion vector compression in H.264 with leaf mode)

  • 이동식;김영모
    • 한국멀티미디어학회논문지
    • /
    • 제13권10호
    • /
    • pp.1487-1493
    • /
    • 2010
  • H.264는 기존의 표준안들보다 좋은 성능을 내기 위해서 더 세밀하고, 더 많은 움직임 정보를 처리한다. 하지만, 움직임 벡터가 기존 표준안에 비해 높은 비율을 차지하게 되어 이에 대한 고려가 필요하게 되었다. 본 논문에서는 움직임 벡터를 효율적으로 처리하기 위해 단말 모드를 사용하는 새로운 방법을 제안한다. 제안하는 알고리즘은 단말 모드를 이용하여 모드들의 분포를 집중시키고, 더 적은 모드 종류를 이용하여 움직임 벡터의 압축을 수행한다. 본 논문에서 제시하는 알고리즘은 현재의 $4{\times}4$ 움직임 벡터 행렬 뿐만 아니라 $8{\times}8$ 행렬 등으로 확장시킬 수 있다. 제안하는 알고리즘은 헤더에서 12.68%, 전체 비트스트립에서 9.7%의 감소율을 보여준다.

움직임 벡터와 빛의 특징을 이용한 비디오 인덱스 (Video Indexing using Motion vector and brightness features)

  • 이재현;조진선
    • 한국컴퓨터정보학회논문지
    • /
    • 제3권4호
    • /
    • pp.27-34
    • /
    • 1998
  • 본 논문에서는 움직임 벡터와 빛의 세기를 이용하여 비디오의 인덱싱과 검색 기법에 대하여 제안한다. 본 논문에서는 움직임 벡터의 특징과 빛의 세기를 계산하여 각 샷 당하나의 대표프레임을 추출하였다. 각각의 대표프레임은 빛의 흐름을 계산하였다. 즉 움직임벡터의 특징은 빛의 흐름으로부터 얻어냈고, BMA 는 움직임 벡터를 찾기 위해 사용했다. 그리고 빛의 세기 값을 히스토그램으로 변환 한 후 컷 검출에 사용하였다. 비디오 프레임의움직임 벡터와 빛의 세기 특징을 기반으로 비디오 데이터를 구성하고 인덱싱 하였다. 비디오 데이터베이스는 비디오의 접근을 위해 내용기반을 제공하고, 인덱스 특징은 B+ 트리 검색을 사용했고, 내부적으로 구성되어 단 노드 방식으로 저장되어 컴퓨터 저장장치에 직접 접근할 수 있게 했다. 본 논문에서는 비디오 데이터 모델을 기반으로 한 비디오 인덱스의 문제를 정의하였다.

  • PDF