본 논문에서는 벡터 미디언 값을 계산하기 위한 시스톨릭 어레이 구조의 벡터 미디언 필터 구조를 제안하였다. 컬러영상처리에서 벡터 신호는 빨강, 녹색 파랑의 3개의 요소로 이루어져 있다. 벡터 미디어 필터는 빨강, 녹색 파랑 요소로 이루어진 벡터 신호들 중에서 벡터 신호를 크기 순서대로 나열하였을 때 가운데 값을 갖는 벡터 신호를 구하는 필터로, 컬러 영상처리에서 기본적으로 많이 사용되는 필터이다. 벡터 신호가 N 개가 있을 때, 지금 까지 제안된 구조에서는(3N+1) 클럭이 필요하나, 제안된 구조에서는 (N+2) 클럭이 소요된다. 그리고 기존의 구조에서는 N 개의 입력 벡터 신호는 미디언 필터에 병렬로 입력되어야 하나 제안된 구조에서는 입력 신호는 직렬로 인가된다. FPGA를 사용하여 구현하였다.
이 논문에서는 미디언 필터의 선형 조합을 통해 임의의 주파수 특성을 갖는 필터 구조와 그 설계 방법을 제안한다. Linear-phase FIR 저대역통과 필터의 홀수번째 필터 계수의 부호를 바꾸면 FIR 고대역 통과 필터를 얻을 수 있는데, 이것은 필터 계수의 부호가 모두 양수인 두 개의 부분 필터의 차와 같은 모양을 가진다. 이 과정을 일반화하여 비선형 필터에 적용하면 LCWM(linear combination of median filter)필터는 가중 미디언 부필터(sub-filter)의 선형 조합으로 구성된다. 이는 선형 대수학에서 어떤 공간상의 임의의 벡터가 그 공간의 기저 (basls) 벡터들의 선형 조합으로 표현된다는 사실과 유사하다. 따라서 부필터의 필터 계수를 기저 벡터로이용하여 얻어지는 기저 행렬과 필터의 주파수 특성을 조절하는 계수 벡터를 구함으로써 LCWM 필터를 설계할 수 있다. 제안된 필터 설계 방법을 이용하면 특정 주파수 특성을 가지는 FIR 필터와 유사한 특성을 갖는 비선형 필터 구조를 만들 수 있다. LCWM 필터는 고대역 통과, 저대역 통과, BP(band-pass), BS(band-stop)의 임의의 주파수 특성을 가지는 필터로 설계될 수 있음이 실험을 통해 확인되었다.
배경추출은 비디오 감시 시스템에서 움직이는 물체를 찾는데 중요한 기술이다. 본 논문에서는 벡터 정렬을 이용한 새로운 온라인 컬러 배경 추출 방법을 제안한다. 제안된 방법에서 배경은 물체보다 발생빈도가 높다는 사실을 이용하여, 연속된 프레임의 컬러화소 값들의 벡터 미디언을 그 화소에서의 배경이라 간주한다. 본 알고리즘에서 현재 프레임의 물체는 얻어진 배경과의 거리가 문턱치보다 큰 화소들의 집합으로 구성된다. 알고리즘의 성능을 평가하기 위하여 온라인 가우시안 혼합 모델(Gaussian Mixture Model)을 이용한 다중 배경추출 방법과 비교하였으며, 비교결과 유사 또는 우월한 실험 결과를 확인하였다.
본 논문에서는 디지털 영상의 배포에서, 위 변조에 사용되는 미디언 필터링 (Median Filtering : MF)을 분류하는 포렌식 검출 알고리즘을 제안한다. 이러한 문제를 해결하기 위한 특징벡터는 영상의 에지 검출량 정보 32, 64, 128에 대한 허프변환(Hough Transform)에 의하여, 각 허프라인 (Hough Line)의 양끝 좌표값과 Angle-Distance 좌표상의 허프픽크치 (Hough Peaks)를 조합하여 42-Dim.으로 구성하였다. 변조된 영상들 중에서 미디언 필터링을 분류하는 검출기는 SVM (Support Vector Machine)에서 특징벡터를 학습하여 구현되었다. 제안된 미디언 필터링 검출 알고리즘은 특징벡터의 길이가 10-Dim.의 MFR (Median Filtering Residual) 스킴 및 686-Dim.의 SPAM (Subtractive Pixel Adjacency Matrix) 스킴과 비교하여 원영상, 평균필터링 ($3{\times}3$), JPEG (QF=90, 70) 압축, 가우시안 필터링 ($3{\times}3$, $5{\times}5$) 영상 모두에서 미디언 필터링의 포렌식 분류율이 99% 이상의 성능을 확인하였다.
디지털 영상의 배포에서, 위 변조자에 의해 영상이 변조되는 심각한 문제가 있다. 이러한 문제를 해결하기 위하여, 본 논문에서는 영상의 픽셀값 경사도에 따른 특징벡터를 이용한 미디언 필터링 영상 포렌식 판정 알고리즘을 제안한다. 제안된 알고리즘에서, 원영상의 픽셀값 경사도로부터 자기회귀 계수를 1~6차까지의 6 Dim.을 계산한다. 그리고 경사도를 Poisson 방정식의 해에 의한 재구성 영상과 원영상과의 차영상으로 부터, 4 Dim. (평균값, 최대값 그리고 최대값의 좌표 i,j)의 특징벡터를 추출한다. 2 종류의 특징벡터는 10 Dim.으로 조합되어 변조된 영상의 미디언 필터링 (Median Filtering: MF) 검출기의 SVM (Support Vector Machine) 분류를 위한 학습에 사용된다. 제안된 미디언 필터링 검출 알고리즘은 동일 10 Dim. 특징벡터의 MFR (Median Filter Residual) 스킴과 비교하여 원영상, 평균필터링 ($3{\times}3$) 영상 그리고 JPEG (QF=90) 영상에서는 성능이 우수하며, Gaussian 필터링 ($3{\times}3$) 영상에서는 성능이 다소 낮지만, 성능평가 전체항목에서 민감도 (Sensitivity; TP: True Positive rate)와 1-특이도 (1-Specificity; FP: False Positive rate)의 AUC (Area Under Curve)가 모두 1에 수렴하여 'Excellent (A)' 등급임을 확인하였다.
대용량의 공간정보의 인터넷을 통한 활용이 활성화되면서 더 정확하고 풍부하며 최신의 정보를 가진 자료에 대한 사용자의 요구는 꾸준히 증가하고 있어 기 구축된 자료 간 융합을 통합 새로운 서비스 제공의 필요성이 커지고 있다. 이중에서 항공사진과 도로 벡터 자료를 융합한 서비스는 직관적이고 정확하게 정보를 전달 할 수 있어 많은 포털사이트에서 제공중인 서비스이나 자료 간 공간 불일치를 해결해야 한다. 본 연구에서는 도로 후보 영상 추출, 템플릿 매칭, 벡터 미디언 필터를 거쳐 자료 간 조정을 수행하였으며 완성도와 부합도로 정확도를 평가한 결과 원래 데이터에 비해 약 35% 향상되었음을 확인할 수 있었다.
스마트 기기와 소형 디스플레이에 사용되는 디지털 영상은 다운스케일링 (Downscaling)된 영상이 사용된다. 본 논문에서는 영상 픽셀값의 경사도에 따른 특징벡터를 이용한 다운스케일링 포저리 (Forgery) 영상 검출 알고리즘을 제안한다. 제안된 알고리즘에서, 원영상의 픽셀값 경사도로부터 자기회귀 (AR: Autoregressive) 계수를 계산한다. 이는 다운스케일링 포저리 영상 검출기의 SVM (Support Vector Machine) 분류를 위한 학습에 사용된다. 제안된 다운스케일링 검출 알고리즘은 동일 10-Dim. 특징벡터의 MFR (Median Filter Residual) 스킴과 686-Dim.의 SPAM (Subtractive Pixel Adjacency Matrix) 스킴과 비교하여 다운스케일링 90% 영상 포저리에서 성능이 우수하며, 평균필터링 ($3{\times}3$) 영상과 미디언필터링 ($3{\times}3$) 영상에서 높은 검출율을 보여 주었다. 특히, 평균필터링과 미디언필터링 영상에서는 성능평가 전체 항목에서 민감도 (Sensitivity; TP: True Positive rate)와 1-특이도 (1-Specificity; FP: False Positive rate)의 AUC (Area Under Curve)가 모두 1에 수렴하여 'Excellent (A)' 등급임을 확인하였다.
디지털 영상의 배포에서, 위 변조자에 의해 영상이 변조되는 심각한 문제가 있다. 이러한 문제를 해결하기 위하여, 본 논문에서는 영상의 Fourier 변환 변이계수를 이용한 미디언 필터링 (Median Filtering: MF) 영상의 포렌식 판정 알고리즘을 제안한다. 제안된 알고리즘에서, 영상의 각 수평, 수직라인의 Fourier 변환 (Fourier Transform: FT)을 하고, 이웃 라인과의 변이계수를 기반으로 하여 MF 검출 (Median Filtering Detection: MFD)을 위한 10 Dim. 특징벡터를 정의한다. 이는 MF 검출기의 SVM (Support Vector Machine) 학습에 사용된다. 제안된 미디언 필터링 검출 스킴은 동일 10 Dim. 특징벡터의 MFR (Median Filter Residual)과 Rhee의 MF 검출 스킴과 비교하여 원영상, JPEG (QF=90), Down 스케일링 (0.9) 그리고 Up 스케일링 (1.1) 영상에서는 성능이 우수하며, Gaussian 필터링($3{\times}3$) 영상에서는 성능이 일부 높았다. 제안된 알고리즘은 성능평가 전체항목에서 민감도 (Sensitivity; TP: True Positive rate)와 1-특이도 (1-Specificity; FP: False Positive rate)에 의한 AUC (Area Under ROC (Receiver Operating Characteristic) Curve)가 모두 1에 수렴하여 'Excellent (A)' 등급임을 확인하였다.
비디오 부호화 기법에서 압축률 및 화질을 결정하는 중요한 부분인 움직임 예측 및 보상(motion estimation and compensation)의 성능을 개선하기 위한 방법을 제안한다. 가장 기본적인 움직임 예측 기법인 전역 탐색 방법은 가장 좋은 화질을 보이지만, 현재 프레임의 각 블록과 가장 유사한 블록을 찾기 위하여 탐색영역(search area)내의 모든 점에 대해 탐색을 수행하므로 그 계산량이 매우 많게 된다. 따라서 좋은 화질을 유지하면서 계산량을 낮추기 위한 많은 고속 알고리즘이 제안되었는데, MPEG-4 표준에 채택된 PMVFAST는 움직임 벡터 간의 상관도를 이용하여 계산량을 낮추면서도 전역 탐색 기법에 근접한 화질을 보인다. 본 논문에서는 움직임 벡터의 예측을 위하여 중간값(median) 계산법에 의한 새로운 방법을 제안하고, 이를 이용하여 움직임 예측의 계산량을 획기적으로 줄일 수 있음을 보인다. 실험결과 제안한 알고리즘은 PMVFAST보다 빠르면서도 전역 탐색 기법보다 높은 평균 PNSR을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.