본 논문은 대규모 텍스트 데이터에서 이슈를 발굴할 때 사용되는 기존의 정보 네트워크 또는 지식 그래프 구축 방법의 한계점을 지적하고, 문장 단위로 정보 네트워크를 구축하는 새로운 방법에 대해서 제안한다. 먼저 문장을 구성하는 단어와 캐릭터수의 분포를 측정하며 의성어와 같은 노이즈를 제거하기 위한 역치값을 설정하였다. 다음으로 BERT 기반 언어모델을 이용하여 모든 문장을 벡터화하고, 코사인 유사도를 이용하여 두 문장벡터에 대한 유사성을 측정하였다. 오분류된 유사도 결과를 최소화하기 위하여 명사형 단어의 의미적 연관성을 비교하는 알고리즘을 개발하였다. 제안된 유사문장 비교 알고리즘의 결과를 검토해 보면, 두 문장은 서술되는 형태가 다르지만 동일한 주제와 내용을 다루고 있는 것을 확인할 수 있었다. 본 논문에서 제안하는 방법은 단어 단위 지식 그래프 해석의 어려움을 극복할 수 있는 새로운 방법이다. 향후 이슈 및 트랜드 분석과 같은 미래연구 분야에 적용하면, 데이터 기반으로 특정 주제에 대한 사회적 관심을 수렴하고, 수요를 반영한 정책적 제언을 도출하는데 기여할 수 있을 것이다
위성영상은 그 특성상 다중대역과 방대한 양의 영상 데이터로 이루어져 있으며, 방대한 양의 데이터에서 필요한 영상정보를 검색하기 위해서는 위성영상 검색에 적용 가능한 다중대역의 화소벡터, 질감 및 이들의 공간분포를 효과적으로 얻어낼 수 있는 속성을 추출하여 활용하는 것이 필요하다. 따라서 본 논문에서는 위성영상 검색에 유용하게 사용할 수 있는 속성으로 다중대역의 화소벡터 값과 질감 정보를 동시에 추출하면서 UV(Color Coherent Vector)의 개념을 적용하여 이들의 공간분포에 관한 정보를 포함한 새로운 속성을 정의하였고, SPOT 위성영상을 이용하여 국부적인 질의 영상의 속성벡터와 광범위한 지역의 위성영상에서 부분영상들의 속성벡터와의 유사성 비교를 통하여 원하는 부분영상을 검색하는 방법으로 그 성능을 평가하였다. 제안된 검색방식은 칼라와 질감 그리고 이들의 공간적인 분포 등을 개별적으로 추출하여 조합하는 과정이 필요 없으며, 특히 위성영상이나 특정 도메인에 종속되지 않기 때문에 다양한 내용기반 영상정보 검색에 효과적으로 이용될 수 있을 것으로 사료된다.
퍼지 ART 알고리즘에서 경계 변수는 패턴들을 클러스터링하는데 있어서 반지름 값이 되며 임의의 패턴과 저장된 패턴과의 불일치(mismatch) 허용도를 결정한다. 이 경계 변수가 크면 입력 벡터와 기대 벡터 사이에 약간의 차이가 있어도 새로운 카테고리(category)로 분류하게 핀다. 반대로 경계 변수가 작으면 입력 벡터와 기대 벡터 사이에 많은 차이가 있더라도 유사성이 인정되어 입력 벡터들을 대략적으로 분류한다. 따라서 영상 인식에 적용하기 위해서는 경험적으로 경계 변수를 설정해야 단점이 있다. 그리고 연결 가중치를 조정하는 과정에서 저장된 패턴들의 정보들이 손실되는 경우가 발생하여 인식율을 저하시킨다. 된 논문에서는 퍼지 ART 알고리즘의 문제점을 개선하기 위하여 퍼지 논리 접속 연산자를 이용하여 경계 변수를 동적으로 조정하고 저장 패턴들과 학습 패턴간의 실제적인 왜곡 정도를 충분히 고려하여 승자 노드로 선택된 빈도수를 가중치 조정에 적용한 개선된 퍼지 ART 알고리즘을 제안하였다. 제안된 방법의 성능을 확인하기 위해서 실제 운송 컨테이너 영상들을 대상으로 실험한 결과, 기존의 ART2 알고리즘이나 퍼지 ART 알고리즘보다 클러스터의 수가 적게 생성되었고 인식 성능도 기존의 방법들보다 우수한 성능이 있음을 확인하였다.
최근 고차원 색인 구조들이 멀티미디어 데이터베이스, 데이터 웨어하우징과 같은 데이터베이스 응용에서 유사성 검색을 위해 요구된다. 본 논문에서는 고차원 특징벡터에 대한 효율적인 저장과 검색을 지원하는 셀-기반 시그니쳐 트리(CS-트리)를 제안한다. 제안하는 CS-트리는 고차원 특징 벡터 공간을 셀로써 분할하여 하나의 특징 벡터를 그에 해당되는 셀의 시그니쳐로 표현한다. 특징 벡터 대신 셀의 시그니쳐를 사용함으로써 트리의 깊이를 줄이고, 그 결과 효율적인 검색 성능을 달성한다. 또한 셀에 기반하여 탐색 공간을 효율적으로 줄이는 유사성 검색 알고리즘을 제시한다. 마지막으로 우수한 고차원 색인 기법으로 알려져 있는 X-트리와 삽입시간, k-최근접 질의에 대한 검색 시간 그리고 부가저장 공간 측면에서 성능 비교를 수행한다. 성능비교 결과 CS-트리가 검색 성능에서 우수함을 보인다.
언어모델(Language Model)을 구축하기 위한 딥러닝 기법인 LSTM의 경우 학습에 사용되는 말뭉치의 전처리 방식에 따라 그 결과가 달라진다. 본 연구에서는 유명한 문학작품(기형도의 시집)을 말뭉치로 사용하여 LSTM 모델을 학습시켰다. 원문을 그대로 사용하는 경우와 조사/어미 등을 삭제한 경우에 따라 상이한 단어벡터 세트를 각각 얻을 수 있다. 이러한 전처리 방식에 따른 유사도/유추 연산 결과, 단어벡터의 평면상의 위치 및 언어모델의 텍스트생성 결과를 비교분석했다. 문학작품을 말뭉치로 사용하는 경우, 전처리 방식에 따라 연산된 단어는 달라지지만, 단어들의 유사도가 높고 유추관계의 상관도가 높다는 것을 알 수 있었다. 평면상의 단어 위치 역시 달라지지만 원래의 맥락과 어긋나지 않았고, 생성된 텍스트는 원래의 분위기와 비슷하면서도 이색적인 작품으로 감상할 수 있었다. 이러한 분석을 통해 문학작품을 객관적이고 다채롭게 향유할 수 있는 수단으로 딥러닝 기법의 언어모델을 활용할 수 있다고 판단된다.
다중 생체 인식은 둘 이상의 생체 정보를 획득하여 이를 기반으로 개인 인증 및 신원을 확인하는 방법으로, 패턴 분류 알고리즘을 이용한 RBF 기반 유사도 단계 융합 다중 생체 인식은 입력된 생체 정보와 데이터베이스 내의 유사도를 나타내는 매칭 값을 각 단일 생체 인식 시스템으로부터 제공받아 이를 이용하여 특징 벡터를 구성하고, 특징 공간상에서 사용자와 위조자를 구분해주는 최적의 판정 경계를 탐색하여 인식을 수행하는 방법이다. 이러한 패턴 분류 알고리즘의 경우 특징 벡터를 구성하는 각 매칭값이 동일한 신뢰도를 가지고 있다는 가정 하에 고정된 판정 경계를 구성하고 분류를 수행하게 된다. 한편, 생체 인식 시스템의 인식 결과는 입력되는 생체 정보의 품질에 영향을 받을 수 있음이 기존의 연구에서 보고되고 있는데, 이는 일반적인 RBF 기반 유사도 단계 융합 다중 생체 인식 시스템을 구성하고 있는 단일 생체 인식 시스템 중 하나의 시스템에 저품질의 생체 정보가 입력되어 신뢰할 수 없는 매칭값을 출력한 경우에는 이를 기반으로 구성된 특징 벡터의 판정이 오분류 되거나 그 결과의 신뢰도가 감소될 수 있는 문제가 있다. 이에 대한 대안으로 본 논문에서는 각 단일 생체 인식 시스템에 입력되는 생체 정보의 품질을 활용하여 RBF 기반 유사도 단계 융합 다중 생체 인식 시스템에서 품질에 따라 유동적인 판정 경계를 구성하여 특징 벡터를 구성하는 각 매칭값이 판정에 미치는 영향을 조절하고자 하였다. 이를 통해 각 생체 정보가 그 품질에 따라 판정에 미치는 영향이 달리 적용될 수 있도록 하였으며, 그 결과 단일 생체 인식과 일반적인 RBF 기반 유사도 단계 융합 다중 생체 인식에 비해 보다 개선된 인식 결과와 신뢰도를 얻을 수 있었다.
본 논문은 유사 아동 그림 선별 알고리즘 생성을 위한 Triplet Loss 기반 딥러닝 모델설계를 목적으로 한다. 아동 그림들 사이 유사성 측정을 위해서는 동일 클래스에 속하는 그림 간 특징 벡터의 거리는 가까워야 하고 다른 클래스 간 특징 벡터의 거리는 멀어져야 한다. 따라서, 본 연구에서는 클래스 수가 많아지는 경우에 이미지 유사성 측정에 이점을 지닌 Triplet Loss와 잔여 네트워크(ResNet)를 결합한 딥러닝 모델을 구축하여 유사 아동 그림 선별 알고리즘을 생성하였다. 결론적으로 본 모델을 활용한 유사 아동 그림 선별 알고리즘을 통해 대상 아동 그림과 다른 그림 간의 유사성을 측정하고 유사성이 높은 그림을 선별할 수 있다.
DTV Full HD급이 보편화되면서 LCD(Liquid Crystal Display)의 잔상효과 제거와 격동적인 화면에서의 고화질 구현을 위해 수신 단에서 후처리 과정으로 움직임 보상 기반 프레임 보간(MCFI)이 사용되고 있다. MCFI는 움직임 정보를 이용하여 삽입될 화면을 보간하는데 이러한 움직임 정보를 후처리 없이 바로 사용하는 건 많은 열화 현상 및 보간 된 물체의 구조 변형 결과를 초래한다. 이에 본 논문에서는 움직임 벡터 후처리 가법으로서 에지 방향 정보기반 가변 가중치 벡터 중앙값 필터를 이용하여 움직임 벡터 처리 기법을 제안한다. 제안한 움직임 벡터 처리 가법은 먼저 소벨 마스크와 가중치 최대빈도필터를 통해 에지 정보맵을 생성한다. 그리고 $3{\times}3$ 윈도우 내 움직임 벡터들의 중앙값을 구한 후 그 중앙값과 윈도우 내 움직임 벡터들과의 변위 값을 이용하여 이상치(outlier) 움직임 벡터를 제거한다. 마지막으로 에지 정보맵의 에지방향 연속성과 움직임 벡터와의 공간적 상호 연관성을 고려하여 가중치 벡터 중앙값 필터를 적용한다. 실험 결과 PSNR은 "0.5 ~ 1" dB, 유사성 명가 지표인 SSIM은 "0.4 ~ 0.8" %의 성능 향상을 보였다.
물리적 또는 기능적으로 연결된 두 지점에서 발생하는 이벤트(쌍대위치 이벤트)들 사이의 국지적인 공간적 연관성을 평가하는 것은 쉽지 않다. 그것은 대개 그러한 형태의 지리적 현상들이 가지고 있는 프로세스 자체의 복잡한 특성 때문이지만, 실제 공간 상에서 재현될 때 매우 복잡하게 얽혀 시각적 패턴을 인식하기 어렵기 때문이기도 하다. 이 논문은 국지적 스케일에서 공간적으로 자기상관된 쌍대위치 이벤트(또는 벡터)들을 확인하기 위한 대안적 방법을 다루고 있다. 제시된 통계적 알고리즘은 (벡터들의) 시작 포인트들의 클러스터링을 평가하기 위한 단변량 포인트 패턴 분석과 시작 포인트들에 상응하는 벡터들의 유사성 측정을 혼합하여 개발되었다. 사례 분석은 미국 오하이오주 프랭클린 카운티의 지역 주택시장에서 2004년에서 2006년 동안 이루어진 주택거래 데이터를 사용하여 이루어졌다. 분석 결과, 국지적으로 특성화될 수 있는, 특히 지역 커뮤니티와 연관된 다양한 이동들을 보여주는 주택거래들을 확인할 수 있었다.
얼굴 영상은 똑같은 표정의 같은 사람이라도 조명에 따라 매우 다른 얼굴 영상으로 나타난다. 따라서 본 논문에서는 조명 변화에 강인한 얼굴 인식 방법을 제안한다. 제안된 방법은 오프라인 훈련(off-line training)과 온라인 인식(on-line recognition)의 두 부분으로 이루어져 있다. 오프라인 훈련은 PCA(principal component analysis)를 기반으로 한다. 온라인 인식에서는 조명 변화에 대한 보상, 얼굴 특징의 추출, 그리고 인식을 위한 분류 과정의 3 단계로 구성되어 있다. 오프라인 훈련에서는 전체 훈련 얼굴 영상 데이터에 PCA를 적용하여 조명 변화가 최대한 제외된 특징 벡터 공간을 생성한다. 실제 인식 단계에서는 첫 번째로 입력 영상으로 들어온 얼굴 영상에서 조명의 영향을 보상하기 위해 준동형 필터링(homomorphic filtering) 후 밝기 정규화(normalization)를 취한다. 두 번째 단계에서는 입력 데이터의 차원을 줄이고 얼굴 특징 벡터를 구하기 위해 PCA를 수행한다. 마지막 과정으로서 입력 영상의 특징 벡터들과 오프라인에서 미리 구하여진 특징 벡터들의 유사도를 측정하여 얼굴을 인식하게 된다. 실험 결과 제안된 방법은 기존의 Eigenface 방법에 비해 우수한 성능을 나타내었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.