게임은 소프트웨어 특성상 출시 후 사용자들의 반응을 빠르게 파악하여 개선하는 것이 중요하다. 하지만 구글 플레이 앱 스토어 등 사용자들이 게임을 다운로드하고 리뷰를 올릴 수 있는 대부분의 사이트들은 게임 리뷰에 대한 매우 제한적이고 모호한 분류 기능만을 제공한다. 따라서 본 논문에서는 사용자들이 사이트에 올린 게임 리뷰를 보다 명확하고 운영에 유용한 주제들로 자동 분류하는 시스템을 개발한다. 본 논문에서 개발한 시스템은 리뷰에 포함된 단어들을 대표적인 단어 임베딩 모델인 word2vec을 사용하여 벡터들로 변환하고, 이 벡터들과 각 주제 간 유사도를 측정하여 해당 리뷰를 관련된 주제로 분류한다. 특히 분류 성능에 직접적인 영향을 미치는 벡터 간 유사도 측정 방법을 선택하기 위해 본 연구에서는 대표적인 벡터 간 유사도 측정 방법인 유클리디안 유사도, 코사인 유사도, 확장된 자카드 유사도의 성능을 실제 데이터를 사용하여 비교하였다. 또한 어떤 리뷰가 둘 이상의 주제에 해당하는 경우를 위해 임계값에 기반한 다중 분류 방법을 사용하였다. 구글 플레이 앱스토어의 실제 데이터를 사용한 실험 결과 본 시스템은 95%까지의 정확도를 보임을 확인하였다.
본 논문에서는 선 드로링 도면 간의 유사도 정도를 비교하여 도면으로 표현된 3차원 물체의 유사도 측정 알고리즘을 제안한다. 앞면, 뒷면, 좌측면, 우측면, 윗면, 아래면의 선 드로잉 영상으로 표현된 총 여섯 개의 영상을 한 물체의 대표 영상으로 이용한다. 데이터베이스의 3차원 물체 영상들은 전처리를 거친 후 각 영상의 여덟 방향의 그래디언트(gradient) 히스토그램을 측정하고 각 영상을 히스토그램의 기술자 벡터로서 표현하여 저장한다. 입력 영상 역시 같은 방식으로 기술자 벡터를 구하고 이를 비교될 영상의 기술자와 비교하여 유사도를 측정한다. 이와 같은 방식으로 가장 유사한 영상 집합을 가지는 N개의 물체를 탐색하여 시각적으로 제시한다.
H.264/AVC 부호화 표준은 움직임 벡터를 부호화하기 위해 인접 블록이 가지는 다수의 움직임 벡터 중에서 확률적으로 해당 움직임 벡터와 가장 유사한 중간값을 예측 움직임 벡터로 사용한다. 이러한 방법은 다수의 움직임 벡터 중에서 어떤 움직임 벡터가 예측값으로 사용되었는지에 대한 추가 정보 없이 비트량을 효과적으로 감소시킬 수 있는 장점이 있으나, 중간값을 이용한 예측 움직임 벡터는 해당 움직임 벡터를 부호화하는데 소요되는 비트량을 항상 최소로 만드는 최적 예측값이 아니라는 단점이 있다. 이러한 문제를 해결하기 위해 다수의 인접 블록이 가지는 움직임 벡터 중에서 특정 움직임 벡터가 예측값으로 사용되었는지 표현하는 정보를 복호화기에 알려주도록 하여 항상 최적의 예측 움직임 벡터를 선택함으로써 부호화 효율을 향상시킬 수 있으나, 이에 대한 추가 정보를 부호화해야 하는 문제점이 발생하게 된다. 본 논문에서는 부호화기가 부호화 효율 측면에서 가장 우수한 움직임 벡터를 예측값으로 선택하고, 이를 복호화기가 스스로 예측함으로써 인접 블록이 가지는 다수의 움직임 벡터 중에서 특정 움직임 벡터가 예측값으로 사용되었는지에 대한 정보없이 움직임 벡터 부호화에 소요되는 비트량을 효과적으로 감소시키는 움직임 벡터 부호화 방법을 제안한다. 제안한 부호화기는 율-왜곡 측면에서 가장 우수한 예측 움직임 벡터를 선택하고, 복호화기는 부호화기가 선택한 예측 움직임 벡터를 정합 기술을 사용하여 스스로 예측한다. 실험 결과는 제안 방법이 QCIF 및 CIF 영상에서 약 2.2%의 전체 비트량을 감소시킬 수 있음을 보여준다.
이 논문에서는 크기가 큰 III-Conditioned Matrices 정방행렬의 좌측 또는 우측 역행렬 계산시 계산상의 정확도를 향상시키는 알고리듬에 대하여 기술한다. 이 알고리듬은 대상 행렬의 행벡터들을 Input으로 하고 해당 Input 벡터가 몇번째 행 벡터인지를 나타내는 단위 벡터를 Target 벡터로 하며 초기 Weight 값으로 Pivoting을 겸한 Gauss소거법을 적용하여 얻은 역행렬을 사용하는 Single Layer 인공신경망에 적용하는 역전파 알고리듬과 흡사한 것이다. 각각의 Input 행 벡터에 대하여 역행렬의 열 벡터들이 점진적으로 직교가 되거나 평행이 되도록 근접시키므로써 모든 Input 행 벡터들이 열벡터들에 비교적 균일하게 직교 또는 평행이 되도록 학습시키는 알고리듬이다.
기존의 문서 검색 방법론은 TF-IDF와 같은 벡터공간모델을 활용한 키워드 기반 방법론을 사용한다. 키워드 기반의 문서검색방법론으로는 문제가 몇몇 문제점이 나타날 수 있다. 먼저 몇 개의 키워드로 전체의 의미를 나타내기 힘들 수 있다. 또 기존의 키워드 기반의 방법론을 사용하면 의미상으로 비슷하지만 모양이 다른 동의어를 사용한 문서의 경우 두 문서 간에 일치하는 단어들의 특성치만 고려하여 관련이 있는 문서를 제대로 검색하지 못하거나 그 유사도를 낮게 평가할 수 있다. 본 연구는 문서를 기반으로 한 검색방법을 제안한다. Centrality를 사용해 쿼리 문서의 특성 벡터를 구하고 Word2vec알고리즘을 사용하여 단어의 모양이 아닌 단어의 의미를 고려할 수 있는 특성 벡터를 만들어 검색 성능의 향상과 더불어 유사한 단어를 사용한 문서를 찾을 수 있다.
본 논문에서는 SURF 알고리즘을 이용한 직교식 스테레오 카메라 영상의 칼라 불균형 보정 방법 제안한다. 제안 방법에서는 SURF 알고리즘을 이용하여 스테레오 좌, 우 영상의 대응점을 찾은 후, 찾은 대응점들의 칼라 보정 벡터를 영상 획득 모델을 기반으로 계산한다. 영상 전체에서 다양한 칼라 대응점 정보를 추출하기 위하여 본 논문에서는 분할영상을 이용하여 칼라 대응점 정보를 추출한다. 추출된 대응점 정보는 초기 칼라 보정 벡터로 변환할 수 있으며 좌, 우 영상의 모든 픽셀에 대하여 색정보가 가장 유사한 대응점의 보정 벡터를 사용하여 칼라 불균형을 보정한다. 초기 보정 벡터를 이용한 칼라 불균형 보정 후 존재하는 노이즈을 제거하기 위하여 유사한 색공간에 위치한 칼라 보정 벡터에 가우시안 필터를 적용한다. 실험 결과로 원본 영상과 보정된 영상의 칼라 히스토그램을 비교하였으며, 분할 영역의 수에 따른 보정 결과도 비교 제시하였다. 실험 결과는 제안한 방법이 직교식 스테레오 카메라 영상에 효과적인 칼라 불균형 보정 방법임을 보여준다.
프랙탈 영상압축은 원 영상블록과 가장 유사한 영역을 원영상 내에서 찾는 자기유사성에 기반한 축소변환을 이용하여 영상데이터를 압축시키는 방법이다. 프랙탈은 영상데이터를 압축하는 효율적인 방법으로 인정을 받고 있으나 상대적으로 높은 영상 왜곡률과 부호화 시간이 오래 걸리는 단점을 가지고 있다. 본 논문은 프랙탈의 영상 왜곡률 특성을 개선하기 위하여 프랙탈과 벡터양자화기를 혼합하였으며, 벡터양자화기의 클러스터링 알고리듬으로는 개선한 Self Organizing Feature Map(SOFM)을 사용하였다. 제안된 시스템의 성능평가를 위하여 일반적인 SOFM을 사용한 시스템 그리고 프랙탈을 단독으로 사용한 시스템과 비교하여 전체적인 성능 향상 정도를 확인하였다. 그 결과 개선한 경쟁학습 SOFM을 사용한 벡터양자화기와 프랙탈 혼합시스템이 일반적인 SOFM을 사용한 벡터양자화기와 프랙탈 혼합시스템보다 영상 왜곡특성이 향상된 것을 확인하였다.
문서와 문서간의 유사도들 측정하는 방법 은 크게 지문법 (fingerprint)을 이용한 방법과 서열 정렬(sequence alignment)알고리즘을 이용한 방법이 있다. 두 방법은 각각 속도와 정확도라는 장점을 가지고 있다. 다단계정렬(MLA, Multi-Level alignment))는 이러한 두 방법을 조합하여 탐색 속도와 정확도 사이의 비중을 사용자가 결정할 수 있도록 하기 위한 방법이다.[1] 다단계 정렬은 두 문서를 단위 블록(basis block)로 나누고 블록 간의 벡터를 비교하여 유사도를 측정하게 되는데, 본 연구에서는 초성 추출 및 어간 추출을 통해 단위 블록의 벡터를 빠른 시 간에 생성하고 비교하는 방법과 다단계 탐색을 통해 정확도를 유지하면서 빠르게 유사도를 측정하는 방식에 대해 설명한다. 실험결과 제안 방법을 통해 다단계 정렬 방법을 이용한 대용량 문서 비교의 속도가 2 배 이상 빨라짐을 보인다.
본 논문에서는 청각 기억 게임을 위하여 두 개의 소리 파형을 비교하여 파형의 리듬 유사도를 정량적으로 측정하는 기술을 제안한다. 제안한 방법은 두 입력 파형에 대하여 에너지 변화, 에너지 피크의 지속 시간, 음색 등을 분석하여 각 파형에 포함된 비트 위치를 검출하고, 두 파형의 템포 차이와 비트 수의 차이를 보상하는 과정을 통하여 두 파형의 리듬 벡터를 각각 정의한다. 다음, 두 리듬 벡터 사이의 차이와 비트 수의 차이를 적용하여 두 입력 파형의 리듬 유사도를 정량적으로 표현하는 식을 정의한다. 제안한 방법으로 측정한 리듬 유사도와 주관적 청취 평가로 측정한 리듬 유사도를 비교하였으며, 두 방법에 의한 리듬 유사도가 상관도 0.86을 가지는 것을 확인하였다.
제안 논문에서는 의료영상 이미지를 입력받아 병변 추출이 가능한 알고리즘을 제안한다. 의료영상 이미지의 병변을 추출하기 위해 SIFT 알고리즘을 이용해 특징점들을 추출한다. 특징점의 강도를 높이기 위해 벡터 유사도를 이용해 입력 영상과 병변이미지를 정합하고 병변을 추출한다. 벡터 유사도 정합을 통해 빠르게 병변을 도출할 수 있다. 국소적인 특징점 쌍으로부터 방향 벡터를 생성하기 때문에 방향 자체는 국소적인 특징만을 나타내지만 두 영상 간에 존재하는 다른 벡터들 간의 유사도를 비교하고 전역적인 특징으로 확장될 수 있는 장점을 갖는다. 또한 병변 정합 오류율은 평균 1.02%, 처리속도는 특징점 강도 정보를 사용하지 않을 때보다 약 40%가 향상됨을 실험을 통해 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.