• Title/Summary/Keyword: 벡터유사도

Search Result 733, Processing Time 0.024 seconds

Performance Improvement of Image Retrieval System by Presenting Query based on Human Perception (인간의 인지도에 근거한 질의를 통한 영상 검색의 성능 향상)

  • 유헌우;장동식;오근태
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.9 no.2
    • /
    • pp.158-165
    • /
    • 2003
  • Image similarity is often decided by computing the distance between two feature vectors. Unfortunately, the feature vector cannot always reflect the notion of similarity in human perception. Therefore, most current image retrieval systems use weights measuring the importance of each feature. In this paper new initial weight selection and update rules are proposed for image retrieval purpose. In order to obtain the purpose, database images are first divided into groups based on human perception and, inner and outer query are performed, and, then, optimal feature weights for each database images are computed through searching the group where the result images among retrieved images are belong. Experimental results on 2000 images show the performance of proposed algorithm.

A relevance-based pairwise chromagram similarity for improving cover song retrieval accuracy (커버곡 검색 정확도 향상을 위한 적합도 기반 크로마그램 쌍별 유사도)

  • Jin Soo Seo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.2
    • /
    • pp.200-206
    • /
    • 2024
  • Computing music similarity is an indispensable component in developing music search service. This paper proposes a relevance weight of each chromagram vector for cover song identification in computing a music similarity function in order to boost identification accuracy. We derive a music similarity function using the relevance weight based on the probabilistic relevance model, where higher relevance weights are assigned to less frequently-occurring discriminant chromagram vectors while lower weights to more frequently-occurring ones. Experimental results performed on two cover music datasets show that the proposed music similarity improves the cover song identification performance.

Deep Learning Application for Core Image Analysis of the Poems by Ki Hyung-Do (딥러닝을 이용한 기형도 시의 핵심 이미지 분석)

  • Ko, Kwang-Ho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.3
    • /
    • pp.591-598
    • /
    • 2021
  • It's possible to get the word-vector by the statistical SVD or deep-learning CBOW and LSTM methods and theses ones learn the contexts of forward/backward words or the sequence of following words. It's used to analyze the poems by Ki Hyung-do with similar words recommended by the word-vector showing the core images of the poetry. It seems at first sight that the words don't go well with the images but they express the similar style described by the reference words once you look close the contexts of the specific poems. The word-vector can analogize the words having the same relations with the ones between the representative words for the core images of the poems. Therefore you can analyze the poems in depth and in variety with the similarity and analogy operations by the word-vector estimated with the statistical SVD or deep-learning CBOW and LSTM methods.

Improving the Performance of SVM Text Categorization with Inter-document Similarities (문헌간 유사도를 이용한 SVM 분류기의 문헌분류성능 향상에 관한 연구)

  • Lee, Jae-Yun
    • Journal of the Korean Society for information Management
    • /
    • v.22 no.3 s.57
    • /
    • pp.261-287
    • /
    • 2005
  • The purpose of this paper is to explore the ways to improve the performance of SVM (Support Vector Machines) text classifier using inter-document similarities. SVMs are powerful machine learning systems, which are considered as the state-of-the-art technique for automatic document classification. In this paper text categorization via SVMs approach based on feature representation with document vectors is suggested. In this approach, document vectors instead of index terms are used as features, and vector similarities instead of term weights are used as feature values. Experiments show that SVM classifier with document vector features can improve the document classification performance. For the sake of run-time efficiency, two methods are developed: One is to select document vector features, and the other is to use category centroid vector features instead. Experiments on these two methods show that we can get improved performance with small vector feature set than the performance of conventional methods with index term features.

Similar Verb Words Extraction based on their Case Frame Structure (격틀 구조에 기반한 유사 동사 추출)

  • Cho, Junghyun;Jung, Hyunki;Kim, Yu-Seop
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.219-224
    • /
    • 2009
  • 한국어 Propbank를 구축하기 위해서는 유사 동사를 군집화하고 군집에 포함되는 동사들의 구문 및 의미 특성을 모아놓은 정보가 필요하다. 본 연구에서는 이러한 군집화의 초기 단계로써 개별 동사들의 격틀 구조에 기반하여 동사간의 유사도를 추정하여 유사 동사를 추출하고자 하였다. 본 연구는 개별 동사의 격틀 정보를 추출하기 위하여 세종 계획의 용언 사전과 KAIST 언어자원의 동사 격틀 사전을 활용하였다. 또한 격틀을 세분화하여 보다 상세한 격틀 정보를 생성하기 위하여 격틀이 가지고 있는 논항의 특성을 활용하였다. 동사의 유사도를 측정하기 위하여 개별 동사들은 벡터로 표현하였고, 벡터의 원소는 해당 동사가 다른 동사와 세분화된 격틀을 공유하는 정도로 하였다. 실험에서는 두 용언 사전에서 개별적으로 위의 과정을 진행하여 각 동사와 유사한 동사들을 추출하였다.

  • PDF

Sentence Interaction-based Document Similarity Models for News Clustering (뉴스 클러스터링을 위한 문장 간 상호 작용 기반 문서 쌍 유사도 측정 모델들)

  • Choi, Seonghwan;Son, Donghyun;Lee, Hochang
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.401-407
    • /
    • 2020
  • 뉴스 클러스터링에서 두 문서 간의 유사도는 클러스터의 특성을 결정하는 중요한 부분 중 하나이다. 전통적인 단어 기반 접근 방법인 TF-IDF 벡터 유사도는 문서 간의 의미적인 유사도를 반영하지 못하고, 기존 딥러닝 기반 접근 방법인 시퀀스 유사도 측정 모델은 문서 단위에서 나타나는 긴 문맥을 반영하지 못하는 문제점을 가지고 있다. 이 논문에서 우리는 뉴스 클러스터링에 적합한 문서 쌍 유사도 모델을 구성하기 위하여 문서 쌍에서 생성되는 다수의 문장 표현들 간의 유사도 정보를 종합하여 전체 문서 쌍의 유사도를 측정하는 네 가지 유사도 모델을 제안하였다. 이 접근 방법들은 하나의 벡터로 전체 문서 표현을 압축하는 HAN (hierarchical attention network)와 같은 접근 방법에 비해 두 문서에서 나타나는 문장들 간의 직접적인 유사도를 통해서 전체 문서 쌍의 유사도를 추정한다. 그리고 기존 접근 방법들인 SVM과 HAN과 제안하는 네 가지 유사도 모델을 통해서 두 문서 쌍 간의 유사도 측정 실험을 하였고, 두 가지 접근 방법에서 기존 접근 방법들보다 높은 성능이 나타나는 것을 확인할 수 있었고, 그래프 기반 접근 방법과 유사한 성능을 보이지만 더 효율적으로 문서 유사도를 측정하는 것을 확인하였다.

  • PDF

SOMk-NN Search Algorithm for Content-Based Retrieval (내용기반 검색을 위한 SOMk-NN탐색 알고리즘)

  • O, Gun-Seok;Kim, Pan-Gu
    • Journal of KIISE:Databases
    • /
    • v.29 no.5
    • /
    • pp.358-366
    • /
    • 2002
  • Feature-based similarity retrieval become an important research issue in image database systems. The features of image data are useful to discrimination of images. In this paper, we propose the high speed k-Nearest Neighbor search algorithm based on Self-Organizing Maps. Self-Organizing Maps(SOM) provides a mapping from high dimensional feature vectors onto a two-dimensional space and generates a topological feature map. A topological feature map preserves the mutual relations (similarities) in feature spaces of input data, and clusters mutually similar feature vectors in a neighboring nodes. Therefore each node of the topological feature map holds a node vector and similar images that is closest to each node vector. We implemented a k-NN search for similar image classification as to (1) access to topological feature map, and (2) apply to pruning strategy of high speed search. We experiment on the performance of our algorithm using color feature vectors extracted from images. Promising results have been obtained in experiments.

Question Retrieval using Deep Semantic Matching for Community Question Answering (심층적 의미 매칭을 이용한 cQA 시스템 질문 검색)

  • Kim, Seon-Hoon;Jang, Heon-Seok;Kang, In-Ho
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.116-121
    • /
    • 2017
  • cQA(Community-based Question Answering) 시스템은 온라인 커뮤니티를 통해 사용자들이 질문을 남기고 답변을 작성할 수 있도록 만들어진 시스템이다. 신규 질문이 인입되면, 기존에 축적된 cQA 저장소에서 해당 질문과 가장 유사한 질문을 검색하고, 그 질문에 대한 답변을 신규 질문에 대한 답변으로 대체할 수 있다. 하지만, 키워드 매칭을 사용하는 전통적인 검색 방식으로는 문장에 내재된 의미들을 이용할 수 없다는 한계가 있다. 이를 극복하기 위해서는 의미적으로 동일한 문장들로 학습이 되어야 하지만, 이러한 데이터를 대량으로 확보하기에는 어려움이 있다. 본 논문에서는 질문이 제목과 내용으로 분리되어 있는 대량의 cQA 셋에서, 질문 제목과 내용을 의미 벡터 공간으로 사상하고 두 벡터의 상대적 거리가 가깝게 되도록 학습함으로써 의사(pseudo) 유사 의미의 성질을 내재화 하였다. 또한, 질문 제목과 내용의 의미 벡터 표현(representation)을 위하여, semi-training word embedding과 CNN(Convolutional Neural Network)을 이용한 딥러닝 기법을 제안하였다. 유사 질문 검색 실험 결과, 제안 모델을 이용한 검색이 키워드 매칭 기반 검색보다 좋은 성능을 보였다.

  • PDF

Empirical Analysis of K-Nearest Neighbor Recommendation Engine using Vector Similarity (K-최근접 이웃 추천 엔진에서의 벡터 유사도 사용에 대한 실험적 분석)

  • 김혜재;손기락
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.103-105
    • /
    • 2001
  • 인터넷 사용 인구의 폭증으로 인터넷 사이트가 경쟁적으로 유용한 각종 정보를 사용자들에게 제공하여 보다 많은 수의 회원을 확보하기 위해 노력하고 있지만 여러 사이트를 동시에 사용하고 있는 대부분의 인터넷 사용자들에게는 각 사이트에서 날아드는 정보를 매번 일일이 검색해야 하는 일이 여간 번거롭지 않을 뿐만 아니라 이런 무분별하고 획일적인 정보 서비스는 오히려 사용자들의 인터넷 사용을 불편하게 하며 더욱이 그 내용이 관심 밖의 것이 경우 네트워크의 효율적인 사용을 저해하는 정보공해에 지나지 않게 된다. 추천엔진은 기본으로 끊임없이 유입되는 다량의 정보 중에서 필요한 것을 추천해 주는 것이다. 이에 본 논문에서는 사용자들에게 필요한 정보만을 효율적으로 전달 해주기 위해서 먼저 개인화된 정보의 전달을 위해 사용자의취향을 파악하여 선택 가능성이 높은 항목을 예측할 수 있어야 한다. 그리고 사용자와 가까운 K 명의 사용자들을 효율적으로 검색하기 위해서 K-최근접 이웃 방식을 사용하고 인덱싱을 사용할 수 있는 세가지 벡터 유사도를 기존의 피어슨 상관계수(Pearson Correlation)와 비교하여 제안한다. 이를 통해 정보의 효율적인 제공방법, 즉 일반적인 검색으로 인한 정보의 제공이 아닌 일반 사용자들의 추천에 의해 정보를 제공하는 K-최근접 이웃 추천 엔진을 세가지 벡터 유사도를 이용해서 분석한다.

  • PDF

Improving the Performance of Information Retrieval System by using GPU Parallelism (GPU 병렬성을 이용한 정보 검색 시스템의 성능 개선)

  • Park, Il-Nam;Bae, Byunggurl;Im, Eun-Jin;Kang, Seung-Shik
    • Annual Conference on Human and Language Technology
    • /
    • 2011.10a
    • /
    • pp.83-84
    • /
    • 2011
  • 정보 검색 시스템에서 사용되고 있는 벡터 공간 모델은 벡터 유사도 계산 속도에 따라 전체 시스템의 성능에 많은 영향을 미친다. 본 논문에서는 문서 유사도 계산 성능을 향상시키기 위하여 GPU(Graphic Processing Unit)를 이용하는 CUDA프레임워크에서 병렬처리 연산을 구현하였으며, CPU(Central Processing Unit) 환경에서의 연산 속도와 비교했을 때 최대 15배의 성능 향상 효과가 있음을 확인하였다.

  • PDF