Proceedings of the Korean Information Science Society Conference (한국정보과학회:학술대회논문집)
- 2001.04b
- /
- Pages.103-105
- /
- 2001
- /
- 1598-5164(pISSN)
Empirical Analysis of K-Nearest Neighbor Recommendation Engine using Vector Similarity
K-최근접 이웃 추천 엔진에서의 벡터 유사도 사용에 대한 실험적 분석
Abstract
인터넷 사용 인구의 폭증으로 인터넷 사이트가 경쟁적으로 유용한 각종 정보를 사용자들에게 제공하여 보다 많은 수의 회원을 확보하기 위해 노력하고 있지만 여러 사이트를 동시에 사용하고 있는 대부분의 인터넷 사용자들에게는 각 사이트에서 날아드는 정보를 매번 일일이 검색해야 하는 일이 여간 번거롭지 않을 뿐만 아니라 이런 무분별하고 획일적인 정보 서비스는 오히려 사용자들의 인터넷 사용을 불편하게 하며 더욱이 그 내용이 관심 밖의 것이 경우 네트워크의 효율적인 사용을 저해하는 정보공해에 지나지 않게 된다. 추천엔진은 기본으로 끊임없이 유입되는 다량의 정보 중에서 필요한 것을 추천해 주는 것이다. 이에 본 논문에서는 사용자들에게 필요한 정보만을 효율적으로 전달 해주기 위해서 먼저 개인화된 정보의 전달을 위해 사용자의취향을 파악하여 선택 가능성이 높은 항목을 예측할 수 있어야 한다. 그리고 사용자와 가까운 K 명의 사용자들을 효율적으로 검색하기 위해서 K-최근접 이웃 방식을 사용하고 인덱싱을 사용할 수 있는 세가지 벡터 유사도를 기존의 피어슨 상관계수(Pearson Correlation)와 비교하여 제안한다. 이를 통해 정보의 효율적인 제공방법, 즉 일반적인 검색으로 인한 정보의 제공이 아닌 일반 사용자들의 추천에 의해 정보를 제공하는 K-최근접 이웃 추천 엔진을 세가지 벡터 유사도를 이용해서 분석한다.
Keywords