• Title/Summary/Keyword: 벡터요소

Search Result 480, Processing Time 0.037 seconds

Automated Analyses of Ground-Penetrating Radar Images to Determine Spatial Distribution of Buried Cultural Heritage (매장 문화재 공간 분포 결정을 위한 지하투과레이더 영상 분석 자동화 기법 탐색)

  • Kwon, Moonhee;Kim, Seung-Sep
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.551-561
    • /
    • 2022
  • Geophysical exploration methods are very useful for generating high-resolution images of underground structures, and such methods can be applied to investigation of buried cultural properties and for determining their exact locations. In this study, image feature extraction and image segmentation methods were applied to automatically distinguish the structures of buried relics from the high-resolution ground-penetrating radar (GPR) images obtained at the center of Silla Kingdom, Gyeongju, South Korea. The major purpose for image feature extraction analyses is identifying the circular features from building remains and the linear features from ancient roads and fences. Feature extraction is implemented by applying the Canny edge detection and Hough transform algorithms. We applied the Hough transforms to the edge image resulted from the Canny algorithm in order to determine the locations the target features. However, the Hough transform requires different parameter settings for each survey sector. As for image segmentation, we applied the connected element labeling algorithm and object-based image analysis using Orfeo Toolbox (OTB) in QGIS. The connected components labeled image shows the signals associated with the target buried relics are effectively connected and labeled. However, we often find multiple labels are assigned to a single structure on the given GPR data. Object-based image analysis was conducted by using a Large-Scale Mean-Shift (LSMS) image segmentation. In this analysis, a vector layer containing pixel values for each segmented polygon was estimated first and then used to build a train-validation dataset by assigning the polygons to one class associated with the buried relics and another class for the background field. With the Random Forest Classifier, we find that the polygons on the LSMS image segmentation layer can be successfully classified into the polygons of the buried relics and those of the background. Thus, we propose that these automatic classification methods applied to the GPR images of buried cultural heritage in this study can be useful to obtain consistent analyses results for planning excavation processes.

A New Algorithm for the Interpretation of Joint Orientation Using Multistage Convergent Photographing Technique (수렴다중촬영기법을 이용한 새로운 절리방향 해석방법)

  • 김재동;김종훈
    • Tunnel and Underground Space
    • /
    • v.13 no.6
    • /
    • pp.486-494
    • /
    • 2003
  • When the orientations of joints are measured on a rock exposure, there are frequent cases that are difficult to approach by the surveyor to the target joints or to set up scanlines on the slope. In this study, to complement such limit and weak points, a new algorithm was developed to interpret joint orientation from analyzing the images of rock slope. As a method of arranging the multiple images of a rock slope, the multistage convergent photographing system was introduced to overcome the limitation of photographing direction which existing method such as parallel stereophotogrammetric system has and to cover the range of image measurement, which is the overlapping area between the image pair, to a maximum extent. To determine camera parameters in the perspective projection equation that are the main elements of the analysis method, a new method was developed introducing three ground control points and single ground guide point. This method could be considered to be very simple compared with other existing methods using a number of ground control points and complicated analysis process. So the global coordinates of a specific point on a rock slope could be analyzed with this new method. The orientation of a joint could be calculated using the normal vector of the joint surface which can be derived from the global coordinates of several points on the joint surface analyzed from the images.

Experimental Validation of Isogeometric Optimal Design (아이소-지오메트릭 형상 최적설계의 실험적 검증)

  • Choi, Myung-Jin;Yoon, Min-Ho;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.345-352
    • /
    • 2014
  • In this paper, the CAD data for the optimal shape design obtained by isogeometric shape optimization is directly used to fabricate the specimen by using 3D printer for the experimental validation. In a conventional finite element method, the geometric approximation inherent in the mesh leads to the accuracy issue in response analysis and design sensitivity analysis. Furthermore, in the finite element based shape optimization, subsequent communication with CAD description is required in the design optimization process, which results in the loss of optimal design information during the communication. Isogeometric analysis method employs the same NURBS basis functions and control points used in CAD systems, which enables to use exact geometrical properties like normal vector and curvature information in the response analysis and design sensitivity analysis procedure. Also, it vastly simplify the design modification of complex geometries without communicating with the CAD description of geometry during design optimization process. Therefore, the information of optimal design and material volume is exactly reflected to fabricate the specimen for experimental validation. Through the design optimization examples of elasticity problem, it is experimentally shown that the optimal design has higher stiffness than the initial design. Also, the experimental results match very well with the numerical results. Using a non-contact optical 3D deformation measuring system for strain distribution, it is shown that the stress concentration is significantly alleviated in the optimal design compared with the initial design.

Modeling of Magnetotelluric Data Based on Finite Element Method: Calculation of Auxiliary Fields (유한요소법을 이용한 MT 탐사 자료의 모델링: 보조장 계산의 고찰)

  • Nam, Myung-Jin;Han, Nu-Ree;Kim, Hee-Joon;Song, Yoon-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.2
    • /
    • pp.164-175
    • /
    • 2011
  • Using natural electromagnetic (EM) fields at low frequencies, magnetotelluric (MT) surveys can investigate conductivity structures of the deep subsurface and thus are used to explore geothermal energy resources and investigate proper sites for not only geological $CO_2$ sequestration but also enhanced geothermal system (EGS). Moreover, marine MT data can be used for better interpretation of marine controlled-source EM data. In the interpretation of MT data, MT modeling schemes are important. This study improves a three dimensional (3D) MT modeling algorithm which uses edge finite elements. The algorithm computes magnetic fields by solving an integral form of Faraday's law of induction based on a finite difference (FD) strategy. However, the FD strategy limits the algorithm in computing vertical magnetic fields for a topographic model. The improved algorithm solves the differential form of Faraday's law of induction by making derivatives of electric fields, which are represented as a sum of basis functions multiplied by corresponding weightings. In numerical tests, vertical magnetic fields for topographic models using the improved algorithm overcome the limitation of the old algorithm. This study recomputes induction vectors and tippers for a 3D hill and valley model which were used for computation of the responses using the old algorithm.

A Study on Shape Optimization of Distributed Actuators using Time Domain Finite Element Method (시간유한요소법을 이용한 분포형 구동기의 형상최적화에 관한 연구)

  • Suk, Jin-Young;Kim, You-Dan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.9
    • /
    • pp.56-65
    • /
    • 2005
  • A dynamic analysis method that freezes a time domain by discretization and solves the spatial propagation equation has a unique feature that provides a degree of freedom on spatial domain compared with the space discretization or space-time discretization finite element method. Using this feature, the time finite element analysis can be effectively applied to optimize the spatial characteristics of distributed type actuators. In this research, the time domain finite element method was used to discretize the model. A state variable vector was used in the discretization to include arbitrary initial conditions. A performance index was proposed on spatial domain to consider both potential and vibrational energy, so that the resulting shape of the distributed actuator was optimized for dynamic control of the structure. It is assumed that the structure satisfies the final rest condition using the realizable control scheme although the initial disturbance can affect the system response. Both equations on states and costates were derived based on the selected performance index and structural model. Ricatti matrix differential equations on state and costate variables were derived by the reconfiguration of the sub-matrices and application of time/space boundary conditions, and finally optimal actuator distribution was obtained. Numerical simulation results validated the proposed actuator shape optimization scheme.

Development of a New Lumped-Mass Stick Model using the Eigen-Properties of Structures (구조물의 동적 고유특성을 이용한 새로운 집중질량모델 개발)

  • Roh, Hwa-Sung;Youn, Ji-Man;Lee, Hu-Seok;Lee, Jong-Seh
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.19-26
    • /
    • 2012
  • For a seismic design or performance evaluation of a structure, an experimental investigation on a scale model of the structure or numerical analysis based on the finite element model is considered. Regarding the numerical analysis, a three-dimensional finite element analysis is performed if a high accuracy of the results is required, while a sensitivity or fragility analysis which uses huge seismic ground motions leads to the use of a lumped-mass stick model. The conventional modeling technique to build the lumped-mass stick model calculates the amount of the lumped mass by considering the geometric shape of the structure, like a tributary area. However, the eigenvalues of the conventional model obtained through such a calculation are normally not the same as those of the actual structure. In order to overcome such a deficiency, in this study, a new lumped mass stick model is proposed. The model is named the "frequency adaptive-lumped-mass stick model." It provides the same eigenvalues and similar dynamic responses as the actual structure. A non-prismatic column is considered as an example, and its natural frequencies as well as the dynamic performance of the new lumped model are compared to those of the full-finite element model. To investigate the damping effect on the new model, 1% to 5% of the critical damping ratio is applied to the model and the corresponding results are also compared to those of the finite element model.

AtERF73/HRE1, an Arabidopsis AP2/ERF Transcription Factor Gene, Contains Hypoxia-responsive Cis-acting Elements in Its Promote (애기장대의 AP2/ERF 전사인자인 AtERF73/HRE1의 프로모터에 있어서 저산소 반응 cis-조절 요소의 분석)

  • Hye-Yeon Seok;Huong Thi Tran;Sun-Young Lee;Yong-Hwan Moon
    • Journal of Life Science
    • /
    • v.33 no.1
    • /
    • pp.34-42
    • /
    • 2023
  • In a signal transduction network, from the perception of stress signals to stress-responsive gene ex- pression, binding of various transcription factors to cis-acting elements in stress-responsive promoters coordinate the adaptation of plants to abiotic stresses. Among the AP2/ERF transcription factor family genes, group VII ERF genes, such as RAP2.12, RAP2.2, RAP2.3, AtERF73/HRE1, and AtERF71/ HRE2, are known to be involved in the response to hypoxia stress in Arabidopsis. In this study, we dissected the HRE1 promoter to identify hypoxia-responsive region(s). The 1,000 bp upstream promoter region of HRE1 showed increased promoter activity in Arabidopsis protoplasts and transgenic plants under hypoxia conditions. Analysis of the promoter deletion series of HRE1, including 1,000 bp, 800 bp, 600 bp, 400 bp, 200 bp, 100 bp, and 50 bp upstream promoter regions, using firefly luciferase and GUS as reporter genes indicated that the -200 to -100 region of the HRE1 promoter is responsible for the transcriptional activation of HRE1 in response to hypoxia. In addition, we identified two putative hypoxia-responsive cis-acting elements, the ERF-binding site and DOF-binding site, in the -200 to -100 region of the HRE1 promoter, suggesting that the expression of HRE1 might be regulated via the ERF transcription factor(s) and/or DOF transcription factor(s). Collectively, our results suggest that HRE1 contains hypoxia-responsive cis-acting elements in the -200 to -100 region of its promoter.

Path Control Algorithm for AGV Using Right of Path Occupation (경로 점유권을 이용한 AGV의 경로 제어 알고리즘)

  • Joo, Young-Hoon;Kim, Jong-Seon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.592-598
    • /
    • 2008
  • This paper presents collision prediction and avoidance method for AGVS (Automatic Guide Vehicle System). Also, we propose the PO(Right of Path Occupying) with decentralized delay time for collision avoidance. Classified essential element of AGV's working environment is modeled in this paper. Using this model, we propose a new shortest path algorithm using A* search algorithm and obtain the information on AGVs travel time, coordinates and rotation vector. Finally, we use the AGVs information data as input for simulation program. The simulation practice is used in order to evaluate a collision prediction and avoidance, and it has been presented to demonstrate the applicability of the minimize delay time.

Study of High Speed Image Registration using BLOG (BLOG를 이용한 고속 이미지 정합에 관한 연구)

  • Kim, Jong-Min;Kang, Myung-A
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.11
    • /
    • pp.2478-2484
    • /
    • 2010
  • In this paper, real-time detection methods for Panorama system Key-Points offers. A recent study in PANORAMA system real-time area navigation or DVR to apply such research has recently been actively. The detection of the Key-Point is the most important elements that make up a Panorama system. Not affected by contrast, scale, Orientation must be detected Key-Point. Existing research methods are difficult to use in real-time Because it takes a lot of computation time. Therefore, this paper propose BLOG(BitRate Laplacian Of Gaussian)method for faster time Key-Point Detecting and Through various experiments to detect the Speed, Computation, detection performance is compared against.

Instantaneous Power Compensation Theory in Three-phase Four-wire Systems (3상 4선 계통에서의 순시전력 보상이론)

  • Kim, Hyo-Sung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.172-183
    • /
    • 2006
  • This paper analyzes instantaneous power compensation theory through comparing p-q theory and cross-vector theory which were proposed by Akagi and Nabae respectively in three-phase four-wire systems. The two compensation theories are identical when there is no zero-sequence voltage component in three-phase three-wire systems, However, when the zero-sequence voltage and/or current components exist in three-phase four-wire systems, the two compensation theories we different in definition on instantaneous real power and instantaneous imaginary power. Based on the analysis, this paper presents instantaneous power compensation method that can eliminate neutral current completely without using energy storage element when the zero-sequence current and voltage components exist in three-phase four-wire systems.