데이터의 균형은 객체 인식 분야에서 영향을 미치는 요인 중 하나이다. 본 논문에서는 폐기물 데이터 균형을 위해 Chat-GPT와 Diffusion model 기반 데이터 생성 모델을 제안한다. Chat-GPT를 사용하여 폐기물의 속성에 해당하는 단어를 생성하도록 질문하고, 생성된 단어는 인코더를 통해 벡터화시킨다. 이 중 폐기물과 관련 없는 단어를 삭제 후, 남은 단어들을 결합하는 전처리 과정을 거친다. 결합한 벡터는 디코더를 통해 텍스트 데이터로 변환 후, Stable Diffusion model에 입력되어 텍스트와 상응하는 폐기물 데이터를 생성한다. 이 데이터는 AI Hub의 공공 데이터를 활용하며, 객체 인식 모델인 YOLOv5로 학습해 F1-score와 mAP로 평가한다.
본 논문에서는 상점 내 캡티브 포털을 활용하여 수집된 주문 정보 데이터를 바탕으로 사용자가 선호하는 메뉴를 추천하는 시스템을 제안한다. 이 시스템은 식품 관련 공공 데이터셋으로 학습된 단어 임베딩 모델(Word Embedding Model)로 메뉴명을 벡터화하여 그와 유사한 벡터를 가지는 메뉴를 추천한다. 이 기법은 캡티브 포털에서 수집되는 데이터 특성상 사용자의 개인정보가 비식별화 되고 선택 항목에 대한 정보도 제한되므로 기존의 단어 임베딩 모델을 추천 시스템에 적용하는 경우에 비해 유리하다. 본 논문에서는 실제 동일한 시스템을 사용하는 상점들의 구매 기록 데이터를 활용한 검증 데이터를 확보하여 제안된 추천 시스템이 Precision@k(k=3) 구매 예측에 유의미함을 보인다.
단어 표현은 기계학습을 사용하는 자연어 처리 분야에서 중요하다. 단어 표현은 단어를 텍스트가 아닌 컴퓨터가 분별할 수 있는 심볼로 표현하는 방법이다. 기존 단어 임베딩은 대량의 말뭉치를 이용하여 문장에서 학습할 단어의 주변 단어를 이용하여 학습한다. 하지만 말뭉치 기반의 단어 임베딩은 단어의 등장 빈도수나 학습할 단어의 수를 늘리기 위해서는 많은 양의 말뭉치를 필요로 한다. 본 논문에서는 말뭉치 기반이 아닌 단어의 뜻풀이와 단어의 의미 관계(상위어, 반의어)를 이용하며 기존 Word2Vec의 Skip-Gram을 변형한 자질거울모델을 사용하여 단어를 벡터로 표현하는 방법을 제시한다. 기존 Word2Vec에 비해 적은 데이터로 많은 단어들을 벡터로 표현 가능하였으며 의미적으로 유사한 단어들이 비슷한 벡터를 형성하는 것을 확인할 수 있다. 그리고 반의어 관계에 있는 두 단어의 벡터가 구분되는 것을 확인할 수 있다.
본 논문에서는 균일 칼라 영상 신호의 모델링에 대하여 설명하였으며 이 모델의 성질에 근거하여 균일 칼라영상을 변환하는 방법을 제안하였다. 먼저 칼라 영상 신호 의 모델링을 위하여 칼라 변동원인을 각 칼라 성분에 동등하게 작용하는 "동등요인 (identical or multiplicative)"과 각 칼라 성분에 독립적으로 작용하는 "독립요인 (independent or additive factor)"으로 분류하였으며 각각을 정규 분포로 모델링하 였다. 또한 클러스터의 분포모양은 (R, G, B) 3차원 특징 공간에서 길쭉한 타원체를 형성하며 타원체의 최장축 방향은 클러스터의 평균벡터 방향과 일치하게 됨을 알 수 있었다. 그리고 영상 처리 장치로부터 입력된 균일 칼라 영상을 모델에 적합하도록 변환하는 방법을 연구하였다. 3차원 좌표 변환 방법을 기술하였고 클러스터의 평균 벡터가 한 좌표축이 되도록 하는 변환 행렬을 구하였다. 제안된 방법을 인공 및 자연 칼라 영상을 사용하여 컴퓨터 시뮬레이션으로 실험하였으며 그 결과 변환된 칼라 영 상은 클러스터의 최장축 방향과 평균 벡터가 거의 일치하였다.방향과 평균 벡터가 거의 일치하였다.
본 연구에서는 주어진 옷감 시료의 정적 드레이프 모양으로부터 해당 옷감을 시뮬레이션하기 위해 필요한 시뮬레이션 파라미터를 추정하는 데이터 기반 학습법을 제시한다. 정적 드레이프의 모양을 형성하기 위해 의류 산업계에서 옷감을 물성에 따라 분류하기 위해 사용하는 쿠식 드레이프 (Cusick's drape)에서 착안한 방법을 사용한다. 학습 모델의 입력 벡터는 특정 옷감의 정적 드레이프 모양에서 추출한 특징 벡터와 옷감의 밀도 값으로 구성되고, 출력 벡터는 해당 드레이프 결과를 도출하는 여섯가지 시뮬레이션 파라미터로 구성된다. 실제에 가깝고 편향되지 않은 학습 데이터를 생성하고자 먼저 400가지의 실제 니트 옷감에 대한 시뮬레이션 파라미터를 수집하고 이로부터 GMM (Gaussian mixture model) 생성 모델을 만든다. 다음, GMM 확률분포에 따라 대량의 시뮬레이션 파라미터를 무작위 샘플링한다. 샘플링된 각각의 시뮬레이션 파라미터에 대해 옷감 시뮬레이션을 수행하여 가상의 정적 드레이프 결과를 만들고 이로부터 특징 벡터를 추출한다. 생성된 데이터를 로그선형회기(log-linear regression) 모델로 피팅한다. 학습의 수치적 정확도를 검증하고 시뮬레이션 결과의 시각적 유사도를 비교하여 제시된 방법의 유용성을 확인한다.
본 논문에서는 3D 콘텐츠 인증을 위한 객체별 특징 벡터 기반 강인한 3D 모델 해싱을 제안한다. 제안한 3D 모델 해싱에서는 다양한 객체들로 구성된 3D 모델에서 높은 면적을 가지는 특징 객체내의 꼭지점 거리들을 그룹화한다. 그리고 각 그룹들을 치환한 다음, 그룹 계수, 랜덤 변수 키와 이진화 과정에 의하여 최종 해쉬를 생성한다. 이 때 해쉬의 강인성은 객체 그룹별 꼭지점 거리 분포를 그룹 계수에 의하여 향상되고, 해쉬의 유일성은 그룹 계수를 치환 키 및 랜덤변수 키 기반의 이진화 과정에 의하여 향상된다. 실험 결과로부터 제안한 해싱이 다양한 메쉬 공격 및 기하학 공격에 대한 해쉬의 강인성과 유일성을 확인하였다.
터빈 사이클의 성능 상태량을 결정하기 위한 보정 열 성능 분석은 발전소의 향상된 경제성 운전을 위해 요구된다. 본 연구에서는 유용하고 정확한 성능 분석을 위해서 산업 표준인 ASME PTC를 기분으로 하여 성능 데이터를 사용하여 주급수 유량의 영역별 판정 알고리듬을 개발하고 각 영역별 추정 알고리즘을 개발하였다. 추정 알고리즘은 측정 상태량의 상관관계를 기반으로 형상 분류를 제시하고, 이를 기반으로 서포트 벡터 머신 모델링을 이용하여 추정 모델을 구성하였으며, 서포트 벡터 머신 모델링의 우수성을 검증하기 위하여 신경 회로망 모델, 커널 회귀 모델과 비교하였다. 주급수 유량의 형상 분류 및 추정 모델은 터빈 사이클에서 정확한 보정 열 성능 분석을 제공함으로써 향상된 성능 분석에 기여할 것이다.
본 논문에서는 화자독립 음소 모델을 사용하는 개인용 음성 다이얼링 시스템의 성능 개선 방법을 제안하였다. 화자독립 음소모델을 사용한 음성 다이얼링 방법은 각 화자가 발성한 단어와 연관된 음소 열만을 저장하므로 저장 공간은 크게 줄일 수 있으나 화자독립 모델을 음소 인식에 사용할 때 발생하는 오차로 인하여 화자종속 모델을 사용하는 방법보다는 인식 성능이 저하되는 문제점이 있다. 본 논문에서는 이러한 문제를 해결하기 위하여 학습과정에서 학습 데이터의 음소 열과 화자 적응을 위한 변환 벡터를 동시에 추정한 후 음소 열과 함께 저장하고, 인식 시에 화자독립 음소 모델을 각 화자의 변환벡터를 사용하여 변환한 후 인식을 수행하는 방법을 제안하였다. 여기서 화자적응을 위한 변환 벡터는 확률적 매칭 (stochastic matching)을 위한 최고 유사도 (maximum likelihood) 방법을 이용하여 구하였으며 음소 열과 함께 반복적으로 추정되었다. 인식 실험에서 제안된 방법은 음소 열만을 사용하는 기존 인식 시스템보다 우수한 성능을 나타내었다.
본 논문에서는 차량이 주차된 지형의 조건에 따라 적용되는 도어 개폐 보조력 예측 모델을 제시하였다. 경사도, 사용자의 힘 등의 조건에 따른 개폐력 설정을 위하여 작동 보조력에 대한 학습 모델을 구현하여 비교하였고, 예측 모델의 학습을 위하여 축소모형을 제작하여 실험을 통해 학습데이터를 얻을 수 있는 실험 모델을 구성하였다. 실제 보상력 데이터를 학습, 반영하여 적정 값을 도출할 수 있는 학습 알고리즘을 개발하고, 이를 적용할 수 있는 시스템을 개발하였다. 학습 방법 중에서 인공신경망(Artificial Neural Network, ANN)과 서포트 벡터 머신(Support Vector Machine, SVM) 알고리즘을 적용하여 비교 검증하였다. 실제 측정값과 비교 검증한 결과, 차량의 도어 개폐 보조력 예측을 위해서 서포트 벡터 머신의 상대적으로 높은 적용성을 확인할 수 있었으며, 이 예측 모델을 활용하여 경사, 사용자의 힘에 따라 도어 개폐 구동 모터가 보상해야 할 적정한 힘을 예측하여 시간에 따라 구동함으로써 사용자가 평지와 같은 힘으로 문을 제어할 수 있는 시스템 구성을 제시하였다.
검색에서 이미지는 시각적 속성이 중요지만, 기존의 검색방법은 문서 검색을 위한 방법에 초점이 맞춰져 있어 이미지의 속성 정보가 미반영된 키워드 중심의 검색 시스템이 대부분이다. 본 연구는 이러한 한계를 극복하고자 이미지의 벡터정보를 기반으로 유사 이미지를 검색할 수 있는 모델과 스케치로 검색 쿼리를 제공하여 유사 이미지를 검색할 수 있는 시스템을 개발하였다. 제안된 시스템은 GAN을 이용하여 스케치를 이미지 수준으로 업 샘플링하고, 이미지를 CNN을 통해 벡터로 변환한 후, 벡터 공간 모델을 이용하여 유사 이미지를 검색한다. 제안된 모델을 구현하기 위하여 패션 이미지를 이용하여 모델을 학습시켰고 패션 이미지 검색 시스템을 개발하였다. 성능 측정은 Precision at k를 이용하였으며, 0.774와 0.445의 성능 결과를 보였다. 제안된 방법을 이용하면 이미지 검색 의도를 키워드로 표현하는데 어려움을 느끼는 사용자들의 검색 결과에 긍정적 효과가 나타날 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.