• Title/Summary/Keyword: 벡터모델

Search Result 1,388, Processing Time 0.023 seconds

Predicting Power Generation Patterns Using the Wind Power Data (풍력 데이터를 이용한 발전 패턴 예측)

  • Suh, Dong-Hyok;Kim, Kyu-Ik;Kim, Kwang-Deuk;Ryu, Keun-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.11
    • /
    • pp.245-253
    • /
    • 2011
  • Due to the imprudent spending of the fossil fuels, the environment was contaminated seriously and the exhaustion problems of the fossil fuels loomed large. Therefore people become taking a great interest in alternative energy resources which can solve problems of fossil fuels. The wind power energy is one of the most interested energy in the new and renewable energy. However, the plants of wind power energy and the traditional power plants should be balanced between the power generation and the power consumption. Therefore, we need analysis and prediction to generate power efficiently using wind energy. In this paper, we have performed a research to predict power generation patterns using the wind power data. Prediction approaches of datamining area can be used for building a prediction model. The research steps are as follows: 1) we performed preprocessing to handle the missing values and anomalous data. And we extracted the characteristic vector data. 2) The representative patterns were found by the MIA(Mean Index Adequacy) measure and the SOM(Self-Organizing Feature Map) clustering approach using the normalized dataset. We assigned the class labels to each data. 3) We built a new predicting model about the wind power generation with classification approach. In this experiment, we built a forecasting model to predict wind power generation patterns using the decision tree.

Acceleration of Anisotropic Elastic Reverse-time Migration with GPUs (GPU를 이용한 이방성 탄성 거꿀 참반사 보정의 계산가속)

  • Choi, Hyungwook;Seol, Soon Jee;Byun, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.2
    • /
    • pp.74-84
    • /
    • 2015
  • To yield physically meaningful images through elastic reverse-time migration, the wavefield separation which extracts P- and S-waves from reconstructed vector wavefields by using elastic wave equation is prerequisite. For expanding the application of the elastic reverse-time migration to anisotropic media, not only the anisotropic modelling algorithm but also the anisotropic wavefield separation is essential. The anisotropic wavefield separation which uses pseudo-derivative filters determined according to vertical velocities and anisotropic parameters of elastic media differs from the Helmholtz decomposition which is conventionally used for the isotropic wavefield separation. Since applying these pseudo-derivative filter consumes high computational costs, we have developed the efficient anisotropic wavefield separation algorithm which has capability of parallel computing by using GPUs (Graphic Processing Units). In addition, the highly efficient anisotropic elastic reverse-time migration algorithm using MPI (Message-Passing Interface) and incorporating the developed anisotropic wavefield separation algorithm with GPUs has been developed. To verify the efficiency and the validity of the developed anisotropic elastic reverse-time migration algorithm, a VTI elastic model based on Marmousi-II was built. A synthetic multicomponent seismic data set was created using this VTI elastic model. The computational speed of migration was dramatically enhanced by using GPUs and MPI and the accuracy of image was also improved because of the adoption of the anisotropic wavefield separation.

A Study on the Classification of Unstructured Data through Morpheme Analysis

  • Kim, SungJin;Choi, NakJin;Lee, JunDong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.4
    • /
    • pp.105-112
    • /
    • 2021
  • In the era of big data, interest in data is exploding. In particular, the development of the Internet and social media has led to the creation of new data, enabling the realization of the era of big data and artificial intelligence and opening a new chapter in convergence technology. Also, in the past, there are many demands for analysis of data that could not be handled by programs. In this paper, an analysis model was designed and verified for classification of unstructured data, which is often required in the era of big data. Data crawled DBPia's thesis summary, main words, and sub-keyword, and created a database using KoNLP's data dictionary, and tokenized words through morpheme analysis. In addition, nouns were extracted using KAIST's 9 part-of-speech classification system, TF-IDF values were generated, and an analysis dataset was created by combining training data and Y values. Finally, The adequacy of classification was measured by applying three analysis algorithms(random forest, SVM, decision tree) to the generated analysis dataset. The classification model technique proposed in this paper can be usefully used in various fields such as civil complaint classification analysis and text-related analysis in addition to thesis classification.

Field Observation of Morphological Response to Storm Waves and Sensitivity Analysis of XBeach Model at Beach and Crescentic Bar (폭풍파랑에 따른 해빈과 호형 사주 지형변화 현장 관측 및 XBeach 모델 민감도 분석)

  • Jin, Hyeok;Do, Kideok;Chang, Sungyeol;Kim, In Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.446-457
    • /
    • 2020
  • Crescentic sand bar in the coastal zone of eastern Korea is a common morphological feature and the rhythmic patterns exist constantly except for high wave energy events. However, four consecutive typhoons that directly and indirectly affected the East Sea of Korea from September to October in 2019 impacted the formation of longshore uniform sand bar and overall shoreline retreats (approx. 2 m) although repetitive erosion and accretion patterns exist near the shoreline. Widely used XBeach to predict storm erosions in the beach is utilized to investigate the morphological response to a series of storms and each storm impact (NE-E wave incidence). Several calibration processes for improved XBeach modeling are conducted by recently reported calibration methods and the optimal calibration set obtained is applied to the numerical simulation. Using observed wave, tide, and pre & post-storm bathymetries data with optimal calibration set for XBeach input, XBeach successfully reproduces erosion and accretion patterns near MSL (BSS = 0.77 (Erosion profile), 0.87 (Accretion profile)) and observed the formation of the longshore uniform sandbar. As a result of analysis of simulated total sediment transport vectors and bed level changes at each storm peak Hs, the incident wave direction contributes considerable impact to the behavior of crescentic sandbar. Moreover, not only the wave height but also storm duration affects the magnitude of the sediment transport. However, model results suggest that additional calibration processes are needed to predict the exact crest position of bar and bed level changes across the inner surfzone.

Binary classification of bolts with anti-loosening coating using transfer learning-based CNN (전이학습 기반 CNN을 통한 풀림 방지 코팅 볼트 이진 분류에 관한 연구)

  • Noh, Eunsol;Yi, Sarang;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.651-658
    • /
    • 2021
  • Because bolts with anti-loosening coatings are used mainly for joining safety-related components in automobiles, accurate automatic screening of these coatings is essential to detect defects efficiently. The performance of the convolutional neural network (CNN) used in a previous study [Identification of bolt coating defects using CNN and Grad-CAM] increased with increasing number of data for the analysis of image patterns and characteristics. On the other hand, obtaining the necessary amount of data for coated bolts is difficult, making training time-consuming. In this paper, resorting to the same VGG16 model as in a previous study, transfer learning was applied to decrease the training time and achieve the same or better accuracy with fewer data. The classifier was trained, considering the number of training data for this study and its similarity with ImageNet data. In conjunction with the fully connected layer, the highest accuracy was achieved (95%). To enhance the performance further, the last convolution layer and the classifier were fine-tuned, which resulted in a 2% increase in accuracy (97%). This shows that the learning time can be reduced by transfer learning and fine-tuning while maintaining a high screening accuracy.

Developing a New Algorithm for Conversational Agent to Detect Recognition Error and Neologism Meaning: Utilizing Korean Syllable-based Word Similarity (대화형 에이전트 인식오류 및 신조어 탐지를 위한 알고리즘 개발: 한글 음절 분리 기반의 단어 유사도 활용)

  • Jung-Won Lee;Il Im
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.267-286
    • /
    • 2023
  • The conversational agents such as AI speakers utilize voice conversation for human-computer interaction. Voice recognition errors often occur in conversational situations. Recognition errors in user utterance records can be categorized into two types. The first type is misrecognition errors, where the agent fails to recognize the user's speech entirely. The second type is misinterpretation errors, where the user's speech is recognized and services are provided, but the interpretation differs from the user's intention. Among these, misinterpretation errors require separate error detection as they are recorded as successful service interactions. In this study, various text separation methods were applied to detect misinterpretation. For each of these text separation methods, the similarity of consecutive speech pairs using word embedding and document embedding techniques, which convert words and documents into vectors. This approach goes beyond simple word-based similarity calculation to explore a new method for detecting misinterpretation errors. The research method involved utilizing real user utterance records to train and develop a detection model by applying patterns of misinterpretation error causes. The results revealed that the most significant analysis result was obtained through initial consonant extraction for detecting misinterpretation errors caused by the use of unregistered neologisms. Through comparison with other separation methods, different error types could be observed. This study has two main implications. First, for misinterpretation errors that are difficult to detect due to lack of recognition, the study proposed diverse text separation methods and found a novel method that improved performance remarkably. Second, if this is applied to conversational agents or voice recognition services requiring neologism detection, patterns of errors occurring from the voice recognition stage can be specified. The study proposed and verified that even if not categorized as errors, services can be provided according to user-desired results.

Transgenic Mice Overexpressing Cocaine-Amphetamine Regulated Transcript in the Brain and Spinal Cord (뇌와 척수에서 Cocaine-Amphetamine Regulated Transcript를 과발현하는 형질전환 생쥐)

  • Choi, S.H.;Lee, J.W.;Park, H.D.;Jahng, J.W.;Chung, K.S.;Lee, H.T.
    • Korean Journal of Animal Reproduction
    • /
    • v.25 no.4
    • /
    • pp.389-397
    • /
    • 2001
  • Cocaine-amphetamine regulated transcript (CART), a satiety factor regulated by leptin, is associated with food intake and motor behavior. In knock out studies, Leu34Phe mutation of human CART gene resulted in obese phenotype but mice carrying a targeted deletion of the CART gene exhibited no dramatic increase of body weight on normal fat diet. To establish a new transgenic mouse model for determining the function of CART on feeding behavior in vivo, we constructed the fusion gene, CART gene under the control of neurofilament light chain promoter, which regulates gene expression at the stage of neuronal differentiation. Transgenic mice were generated by microinjection method and screened by PCR and Southern blot analyses. In these transgenic mice, overexpression of CART was detected by in situ hybridization in spinal cords and brains at 13.5 days post-coitum embryos. At six weeks of age, RT-PCR analysis showed that exogenous CART mRNA was expressed strongly in brains and spinal cords, but not much in other tissues. Our results suggest that these transgenic mice provide a new model to investigate the function of CART gene in neuronal network associated with feeding behavior.

  • PDF

Vehicle-Bridge Interaction Analysis of Railway Bridges by Using Conventional Trains (기존선 철도차량을 이용한 철도교의 상호작용해석)

  • Cho, Eun Sang;Kim, Hee Ju;Hwang, Won Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.31-43
    • /
    • 2009
  • In this study, the numerical method is presented, which can consider the various train types and can solve the equations of motion for a vehicle-bridge interaction analysis by non-iteration procedure through formulating the coupled equations of motion. The coupled equations of motion for the vehicle-bridge interaction are solved by the Newmark ${\beta}$ of a direct integration method, and by composing the effective stiffness matrix and the effective force vector according to a analysis step, those can be solved with the same manner of the solving procedure of equilibrium equations in static analysis. Also, the effective stiffness matrix is reconstructed by the Skyline method for increasing the analysis effectiveness. The Cholesky's matrix decomposition scheme is applied to the analysis procedure for minimizing the numerical errors that can be generated in directly calculating the inverse matrix. The equations of motion for the conventional trains are derived, and the numerical models of the conventional trains are idealized by a set of linear springs and dashpots with 16 degrees of freedom. The bridge models are simplified by the 3 dimensional space frame element which is based on the Euler-Bernoulli theory. The rail irregularities of vertical and lateral directions are generated by the PSD functions of the Federal Railroad Administration (FRA). The results of the vehicle-bridge interaction analysis are verified by the experimental results for the railway plate girder bridges of a span length with 12 m, 18 m, and the experimental and analytical data are applied to the low pass filtering scheme, and the basis frequency of the filtering is a 2 times of the 1st fundamental frequency of a bridge bending.

Domain-Specific Terminology Mapping Methodology Using Supervised Autoencoders (지도학습 오토인코더를 이용한 전문어의 범용어 공간 매핑 방법론)

  • Byung Ho Yoon;Junwoo Kim;Namgyu Kim
    • Information Systems Review
    • /
    • v.25 no.1
    • /
    • pp.93-110
    • /
    • 2023
  • Recently, attempts have been made to convert unstructured text into vectors and to analyze vast amounts of natural language for various purposes. In particular, the demand for analyzing texts in specialized domains is rapidly increasing. Therefore, studies are being conducted to analyze specialized and general-purpose documents simultaneously. To analyze specific terms with general terms, it is necessary to align the embedding space of the specific terms with the embedding space of the general terms. So far, attempts have been made to align the embedding of specific terms into the embedding space of general terms through a transformation matrix or mapping function. However, the linear transformation based on the transformation matrix showed a limitation in that it only works well in a local range. To overcome this limitation, various types of nonlinear vector alignment methods have been recently proposed. We propose a vector alignment model that matches the embedding space of specific terms to the embedding space of general terms through end-to-end learning that simultaneously learns the autoencoder and regression model. As a result of experiments with R&D documents in the "Healthcare" field, we confirmed the proposed methodology showed superior performance in terms of accuracy compared to the traditional model.

A Study on Analyzing Sentiments on Movie Reviews by Multi-Level Sentiment Classifier (영화 리뷰 감성분석을 위한 텍스트 마이닝 기반 감성 분류기 구축)

  • Kim, Yuyoung;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.71-89
    • /
    • 2016
  • Sentiment analysis is used for identifying emotions or sentiments embedded in the user generated data such as customer reviews from blogs, social network services, and so on. Various research fields such as computer science and business management can take advantage of this feature to analyze customer-generated opinions. In previous studies, the star rating of a review is regarded as the same as sentiment embedded in the text. However, it does not always correspond to the sentiment polarity. Due to this supposition, previous studies have some limitations in their accuracy. To solve this issue, the present study uses a supervised sentiment classification model to measure a more accurate sentiment polarity. This study aims to propose an advanced sentiment classifier and to discover the correlation between movie reviews and box-office success. The advanced sentiment classifier is based on two supervised machine learning techniques, the Support Vector Machines (SVM) and Feedforward Neural Network (FNN). The sentiment scores of the movie reviews are measured by the sentiment classifier and are analyzed by statistical correlations between movie reviews and box-office success. Movie reviews are collected along with a star-rate. The dataset used in this study consists of 1,258,538 reviews from 175 films gathered from Naver Movie website (movie.naver.com). The results show that the proposed sentiment classifier outperforms Naive Bayes (NB) classifier as its accuracy is about 6% higher than NB. Furthermore, the results indicate that there are positive correlations between the star-rate and the number of audiences, which can be regarded as the box-office success of a movie. The study also shows that there is the mild, positive correlation between the sentiment scores estimated by the classifier and the number of audiences. To verify the applicability of the sentiment scores, an independent sample t-test was conducted. For this, the movies were divided into two groups using the average of sentiment scores. The two groups are significantly different in terms of the star-rated scores.