• Title/Summary/Keyword: 베이지안 확률통계

Search Result 71, Processing Time 0.028 seconds

On prediction intervals for binomial data (이항자료에 대한 예측구간)

  • Ryu, Jea-Bok
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.4
    • /
    • pp.579-588
    • /
    • 2021
  • Wald, Agresti-Coull, Jeffreys, and Bayes-Laplace methods are commonly used for confidence interval of binomial proportion are applied for prediction intervals. We used coverage probability, mean coverage probability, root mean squared error, and mean expected width for numerical comparisons. From the comparisons, we found that Wald is not proper as for confidence interval and Agresti-Coull is too conservative to differ from confidence interval. However, Jeffrey and Bayes-Laplace are good for prediction interval and Jeffrey is especially desirable as for confidence interval.

Locally Powerful Unit-Root Test (국소적 강력 단위근 검정)

  • Choi, Bo-Seung;Woo, Jin-Uk;Park, You-Sung
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.4
    • /
    • pp.531-542
    • /
    • 2008
  • The unit root test is the major tool for determining whether we use differencing or detrending to eliminate the trend from time series data. Dickey-Fuller test (Dickey and Fuller, 1979) has the low power of test when the sample size is small or the true coefficient of AR(1) process is almost unit root and the Bayesian unit root test has complicated testing procedure. We propose a new unit root testing procedure, which mixed Bayesian approach with the traditional testing procedure. Using simulation studies, our approach showed locally higher powers than Dickey-Fuller test when the sample size is small or the time series has almost unit root and simpler procedure than Bayesian unit root test procedure. Proposed testing procedure can be applied to the time series data that are not observed as process with unit root.

Statistical Modeling of Joint Distribution Functions for Reliability Analysis (신뢰성 해석을 위한 결합분포함수의 통계모델링)

  • Noh, Yoojeong;Lee, Sangjin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.2603-2609
    • /
    • 2014
  • Reliability analysis of mechanical systems requires statistical modeling of input random variables such as distribution function types and statistical parameters that affect the performance of the mechanical systems. Some random variables are correlated, but considered as independent variables or wrong assumptions on input random variables have been used. In this paper, joint distributions were modeled using copulas and Bayesian method from limited number of data. To verify the proposed method, statistical simulation tests were carried out for various number of samples and correlation coefficients. As a result, the Bayesian method selected the most probable copula types among candidate copulas even though the candidate copula shapes are similar for low correlations or the number of data is limited. The most probable copulas also yielded similar reliabilities with the true reliability obtained from a true copula, so that it can be concluded that the Bayesian method provides accurate statistical modeling for the reliability analysis.

A Study on Quantification of Safety-Critical Software Failure Mode (안전-필수 소프트웨어의 실패모드 정량화에 관한 연구)

  • Kim, Young-Mi;Jeong, Choong-Heui;Kim, Hyeon-Soo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.05a
    • /
    • pp.257-260
    • /
    • 2008
  • 디지털 컴퓨터와 정보처리기술의 급속한 발전과 함께 산업계 전반적으로 아날로그 기술은 쇠퇴하고 디지털 기술로 전환되고 있다. 심지어 안전-필수 기능을 담당하는 원자력발전소의 계측제어시스템에서도 제한적으로 디지털 기술을 채택하여 사용하기 시작했다. 지금까지 소프트웨어의 신뢰도의 정량화에 대한 연구는 많이 이루어져 왔으나 소프트웨어가 가지는 특수성 때문에 연구결과에 대해 전문가들의 동의를 얻지 못하고 있는 상태이다. 원자력발전소에서는 확률적 안전성 평가(PSA)를 수행할 때 소프트웨어의 실패에 기인한 위험은 무시하고 있다. 하지만, 소프트웨어를 기반으로 한 디지털 시스템의 사용이 점점 늘어남에 따라 소프트웨어 신뢰도에 대한 정량화가 점점 더 요구되고 있다. 본 연구에서는 소프트웨어의 실패모드를 정의하고 해당 실패모드에 의해 사고가 발생할 확률을 베이지안 통계이론을 이용하여 정량화하였다.

Theoretical Considerations for the Agresti-Coull Type Confidence Interval in Misclassified Binary Data (오분류된 이진자료에서 Agresti-Coull유형의 신뢰구간에 대한 이론적 고찰)

  • Lee, Seung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.4
    • /
    • pp.445-455
    • /
    • 2011
  • Although misclassified binary data occur frequently in practice, the statistical methodology available for the data is rather limited. In particular, the interval estimation of population proportion has relied on the classical Wald method. Recently, Lee and Choi (2009) developed a new confidence interval by applying the Agresti-Coull's approach and showed the efficiency of their proposed confidence interval numerically, but a theoretical justification has not been explored yet. Therefore, a Bayesian model for the misclassified binary data is developed to consider the Agresti-Coull confidence interval from a theoretical point of view. It is shown that the Agresti-Coull confidence interval is essentially a Bayesian confidence interval.

Bayesian Network Analysis for the Dynamic Prediction of Financial Performance Using Corporate Social Responsibility Activities (베이지안 네트워크를 이용한 기업의 사회적 책임활동과 재무성과)

  • Sun, Eun-Jung
    • Management & Information Systems Review
    • /
    • v.34 no.5
    • /
    • pp.71-92
    • /
    • 2015
  • This study analyzes the impact of Corporate Social Responsibility (CSR) activities on financial performances using Bayesian Network. The research tries to overcome the issues of the uniform assumption of a linear function between financial performance and CSR activities in multiple regression analysis widely used in previous studies. It is required to infer a causal relationship between activities of CSR which have an impact on the financial performances. Identifying the relationship would empower the firms to improve their financial performance by informing the decision makers about the different CSR activities that influence the financial performance of the firms. This research proposes General Bayesian Network (GBN) and presents Markov Blanket induced from GBN. It is empirically demonstrated that all the proposals presented in this study are statistically significant by the results of the research conducted by Korean Economic Justice Institute (KEJI) under Citizen's Coalition for Economic Justice (CCEJ) which investigated approximately 200 companies in Korea based on Korean Economic Justice Institute Index (KEJI index) from 2005 to 2011. The Bayesian Network to effectively infer the properties affecting financial performances through the probabilistic causal relationship. Moreover, I found that there is a causal relationship among CSR activities variable; that is Environment protection is related to Customer protection, Employee satisfaction, and firm size; Soundness is related to Total CSR Evaluation Score, Debt-Assets Ratio. Though the what-if analysis, I suggest to the sensitive factor among the explanatory variables.

  • PDF

A Comparison study of Hybrid Monte Carlo Algorithm

  • 황진수;전성해;이찬범
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2000.11a
    • /
    • pp.135-140
    • /
    • 2000
  • 베이지안 신경망 모형(Bayesian Neural Networks Models)에서 주어진 입력값(input)은 블랙 박스(Black-Box)와 같은 신경망 구조의 각 층(layer)을 거쳐서 출력값(output)으로 계산된다. 새로운 입력 데이터에 대한 예측값은 사후분포(posterior distribution)의 기대값(mean)에 의해 계산된다. 주어진 사전분포(prior distribution)와 학습데이터에 의한 가능도함수(likelihood functions)를 통해 계산되어진 사후분포는 매우 복잡한 구조를 갖게 됨으로서 기대값의 적분계산에 대한 어려움이 발생한다. 이때 확률적 추정에 의한 근사 방법인 몬테칼로 적분을 이용한다. 이러한 방법으로서 Hybrid Monte Carlo 알고리즘은 우수한 결과를 제공하여준다(Neal 1996). 본 논문에서는 Hybrid Monte Carlo 알고리즘과 기존에 많이 사용되고 있는 Gibbs sampling, Metropolis algorithm, 그리고 Slice Sampling등의 몬테칼로 방법들을 비교한다.

  • PDF

Hierachical Bayes Estimation of Small Area Means in Repeated Survey (반복조사에서 소지역자료 베이지안 분석)

  • 김달호;김남희
    • The Korean Journal of Applied Statistics
    • /
    • v.15 no.1
    • /
    • pp.119-128
    • /
    • 2002
  • In this paper, we consider the HB estimators of small area means with repeated survey. mao and Yu(1994) considered small area model with repeated survey data and proposed empirical best linear unbiased estimators. We propose a hierachical Bayes version of Rao and Yu by assigning prior distributions for unknown hyperparameters. We illustrate our HB estimator using very popular data in small area problem and then compare the results with the estimator of Census Bureau and other estimators previously proposed.

On Multiple Comparison of Geometric Means of Exponential Parameters via Graphical Model (그래프 모형을 이용한 지수분포 모수들의 기하평균 비교에 관한 연구)

  • Kim, Dae-Hwang;Kim, Hea-Jung
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.3
    • /
    • pp.447-460
    • /
    • 2006
  • This paper develops a multiple comparison method for finding an optimal ordering of K geometric means of exponential parameters. This is based on the paired comparison experimental arrangement whose results can naturally be represented by a completely oriented graph. Introducing posterior preference probabilities and stochastic transitivity conditions to the graph, we obtain a new graphical model that yields criteria for the optimal ordering in the multiple comparison. Necessary theories involved in the method and some computational aspects are provided. Some numerical examples are given to illustrate the efficiency of the suggested method.

Intervention analysis for spread of COVID-19 in South Korea using SIR model (SIR 모형을 이용한 한국의 코로나19 확산에 대한 개입 효과 분석)

  • Cho, Sumin;Kim, Jaejik
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.3
    • /
    • pp.477-489
    • /
    • 2021
  • COVID-19 has spread seriously around the world in 2020 and it is still significantly affecting our whole daily life. Currently, the whole world is still undergoing the pandemic and South Korea is no exception to it. During the pandemic, South Korea had several events that prevented or accelerated its spread. To establish the prevention policies for infectious diseases, it is very important to evaluate the intervention effect of such events. The susceptible-infected-removed (SIR) model is often used to describe the dynamic behavior of the spread of infectious diseases through ordinary differential equations. However, the SIR model is a deterministic model without considering the uncertainty of observed data. To consider the uncertainty in the SIR model, the Bayesian approach can be employed, and this approach allows us to evaluate the intervention effects by time-varying functions of the infection rate in the SIR model. In this study, we describe the time trend of the spread of COVID-19 in South Korea and investigate the intervention effects for the events using the stochastic SIR model based on the Bayesian approach.