Fuzzy Cognitive Map (FCM) and Bayesian Belief Network (BBN) are two major frameworks for modeling, representing and reasoning about causal knowledge. Despite their extensive use in causal knowledge engineering, there is no reported work which compares their respective roles. This paper aims to fill the gap by providing a qualitative comparison of the two frameworks through a systematic analysis based on some inherent features of the frameworks. We proposed a set of comparison criteria which covers the entire process of causal knowledge engineering, including modeling, representation, and reasoning. These criteria are usability, expressiveness, reasoning capability, formality, and soundness. The results of comparison have revealed some important facts about the characteristics of FCM and BBN, which will help to determine how FCM and BBN should be used, with respect to each other, in causal knowledge engineering.
Kim, Sung-Hyun;Lee, Yong-Mi;Jin, Long;Seo, Sung-Bo;Ryu, Keun-Ho
Proceedings of the Korea Information Processing Society Conference
/
2005.11a
/
pp.47-50
/
2005
센서와 모바일 기술의 발달로 인해 다양한 센서에서 수집된 스트림 데이터를 처리하는 연구들이 많이 수행되고 있다. 다차원 속성의 스트림 데이터는 센서에서 주기적으로 수집되어 버퍼링 후 처리되기 때문에 기존의 투플 기반의 데이터 분류 기법에 적합하지 않다. 따라서 이 논문에서는 윈도우 기반의 스트림 데이터 분류를 위해 각 속성의 평균과 표준편차 값을 이용하여 투플 기반으로 변환하는 기법을 제안한다. 제안된 기법의 타당성은 투플 기반 데이터 분류 기법(의사결정트리, 단순 베이지안 분류기, 베이지안 신뢰 네트워크)에 의한 정확도 측정에 기반 한다. 로봇에서 수집된 센서 데이터를 이용한 실험 결과, 높은 정확도로 제안된 기법이 타당함을 증명하였으며 베이지안 신뢰 네트워크 기법이 다른 기법에 비해 우수함을 발견하였다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2005.04a
/
pp.331-334
/
2005
임베디드 기술의 발전과 유비쿼터스 환경이 점차 확산되면서 상품의 유통 과정이 다양하게 변화되고 있다. 상품에 대한 소비자의 요구는 생산정보를 직접 확인하고 상품을 구매할 수 있도록 하여 다양한 문제 발생시 원산지와 유통경로를 추적할 수 있는 이력 추적 관리 시스템(Traceability Management System)이 요구되고 있다. 본 논문에서는 유비쿼터스 환경에서 상품에 대한 신뢰성을 향상시키고 생산자의 정보 및 제조, 유통과정을 소비자가 추적할 수 있도록 베이지안 네트워크를 이용하여 상품의 이력추적관리 방법을 제안하고 시뮬레이션을 통하여 확인하였다.
Journal of the Korea Society of Computer and Information
/
v.4
no.1
/
pp.68-75
/
1999
In this paper, we propose a Baysian method estimating system reliability which is more effective and precise than conventional methods using prior information. This technique estimates system reliabilities that an entire system and multiprocessing system is normally working in multiprocessor system and multiple port connected memory architecture. The reason is why internetwork with multiprocessor system is mainly connected as multiple bus structure, crossbar switching structure and multiport connected memory structure.
Log data collected from mobile devices contain diverse and meaningful personal information. However, it is not easy to implement a context-aware mobile agent using this personal information due to the inherent limitation in mobile platform such as memory capacity, computation power and its difficulty of analysis of the data. We propose a method of selective inference for modular Bayesian Network for context-aware mobile agent with effectiveness and reliability. Each BN module performs inference only when it can change the result by comparing to the history module which contains evidences and posterior probability, and gets results effectively using a method of influence score of the modules. We adopt memory decay theory and virtual linking method for the evaluation of the reliability and conservation of casual relationship between BN modules, respectively. Finally, we confirm the usefulness of the proposed method by several experiments on mobile phones.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2007.06a
/
pp.477-480
/
2007
얼굴 동작을 효과적으로 인식하는 방법을 제안하고자 한다. 얼굴 동작은 얼굴 표정, 얼굴 자세, 시선, 주름 같은 얼굴 특징이나 얼굴 행동 등으로 표출될 수 있다. 이러한 표출된 정보들은 얼굴 동작이 다양하고 명확하지 않아 연구 진행에 많은 어려움이 있다. 그러므로, 본 논문에서는 얼굴 동작을 묘사하는 FACS를 기반으로 하여 시각적 관찰에 의해 주요한 얼굴 동작을 표현하고, 베이지안 네트워크를 통하여 여러 정보를 분석 융합하여 얼굴 행동을 추론 할 수 있도록 하였다. 베이지안 네트워크의 하향식 추론으로 시각 정보를 선택 할 수 있고, 관측된 현상을 토대로 상향식 추론 하여 얼굴 동작의 신뢰 전파를 통하여 분류 인식한다.
Proceedings of the Korean Information Science Society Conference
/
2004.10a
/
pp.112-114
/
2004
지능형 로봇 에이전트 기술이 발전하면서 서비스 질을 높이기 위한 방법으로 컨텍스트의 활용성이 부각되고 있다. 하지만 컨텍스트 분류 기술들은 아직까지 초기 개발 단계이며 다양한 방법들이 시도되고 있다. 본 논문에서는 전문가의 지식과 학습된 지식을 함께 적용할 수 있고 사람이 그 내용을 이해하기 유리한 베이지안 네트워크(BN)를 이용한 컨텍스트 분류 방법을 제안한다. 일반적인 BN 구조 학습에 사전 지식 및 방향성, 연결 관계 범위를 부여할 수 있는 제한(Constraint)을 적용한 효율적인 컨텍스트 분류 방법을 소개하고, 몇 가지 비교 실험을 통해 기존 방법에 비해 전문가의 개입이 줄어들고 좀 더 신뢰성 있는 컨텍스트 분류기를 얻을 수 있음을 보인다.
Fault localization plays a significant role in enormous distributed system because it can identify root cause of observed faults automatically, supporting self-managing which remains an open topic in managing and controlling complex distributed systems to improve system reliability. Although many Artificial Intelligent techniques have been introduced in support of fault localization in recent research especially in increasing complex ubiquitous environment, the provided functions such as diagnosis and prediction are limited. In this paper, we propose fault localization for self-managing in performance evaluation in order to improve system reliability via learning and analyzing real-time streams of system performance events. We use probabilistic reasoning functions based on the basic Bayes' rule to provide effective mechanism for managing and evaluating system performance parameters automatically, and hence the system reliability is improved. Moreover, due to large number of considered factors in diverse and complex fault reasoning domains, we develop an efficient method which extracts relevant parameters having high relationships with observing problems and ranks them orderly. The selected node ordering lists will be used in network modeling, and hence improving learning efficiency. Using the approach enables us to diagnose the most probable causal factor with responsibility for the underlying performance problems and predict system situation to avoid potential abnormities via posting treatments or pretreatments respectively. The experimental application of system performance analysis by using the proposed approach and various estimations on efficiency and accuracy show that the availability of the proposed approach in performance evaluation domain is optimistic.
Shin, Ji Yae;Kwon, Hyun-Han;Lee, Joo-Heon;Kim, Tae-Woong
Journal of Korea Water Resources Association
/
v.50
no.11
/
pp.769-779
/
2017
As the occurrence of drought is recently on the rise, the reliable drought forecasting is required for developing the drought mitigation and proactive management of water resources. This study developed a probabilistic hydrological drought forecasting method using the Bayesian Networks and drought propagation relationship to estimate future drought with the forecast uncertainty, named as the Propagated Bayesian Networks Drought Forecasting (PBNDF) model. The proposed PBNDF model was composed with 4 nodes of past, current, multi-model ensemble (MME) forecasted information and the drought propagation relationship. Using Palmer Hydrological Drought Index (PHDI), the PBNDF model was applied to forecast the hydrological drought condition at 10 gauging stations in Nakdong River basin. The receiver operating characteristics (ROC) curve analysis was applied to measure the forecast skill of the forecast mean values. The root mean squared error (RMSE) and skill score (SS) were employed to compare the forecast performance with previously developed forecast models (persistence forecast, Bayesian network drought forecast). We found that the forecast skill of PBNDF model showed better performance with low RMSE and high SS of 0.1~0.15. The overall results mean the PBNDF model had good potential in probabilistic drought forecasting.
Journal of the Korean Institute of Intelligent Systems
/
v.22
no.6
/
pp.715-721
/
2012
A threat evaluation is the technique which decides order of priority about tracks engaging with enemy by recognizing battlefield situation and making it efficient decision making. That is, in battle situation of multiple target it makes expeditious decision making and then aims at minimizing asset's damage and maximizing attack to targets. Threat value computation used in threat evaluation is calculated by sensor data which generated in battle space. Because Battle situation is unpredictable and there are various possibilities generating potential events, the damage or loss of data can make confuse decision making. Therefore, in this paper we suggest that substantial threat value calculation using learning bayesian network which makes it adapt to the varying battle situation to gain reliable results under given incomplete data and then verify this system's performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.