• Title/Summary/Keyword: 베이지안 신뢰 네트워크

Search Result 19, Processing Time 0.021 seconds

Fuzzy Cognitive Map and Bayesian Belief Network for Causal Knowledge Engineering: A Comparative Study (인과관계 지식 모델링을 위한 퍼지인식도와 베이지안 신뢰 네트워크의 비교 연구)

  • Cheah, Wooi-Ping;Kim, Kyoung-Yun;Yang, Hyung-Jeong;Kim, Soo-Hyung;Kim, Jeong-Sik
    • The KIPS Transactions:PartB
    • /
    • v.15B no.2
    • /
    • pp.147-158
    • /
    • 2008
  • Fuzzy Cognitive Map (FCM) and Bayesian Belief Network (BBN) are two major frameworks for modeling, representing and reasoning about causal knowledge. Despite their extensive use in causal knowledge engineering, there is no reported work which compares their respective roles. This paper aims to fill the gap by providing a qualitative comparison of the two frameworks through a systematic analysis based on some inherent features of the frameworks. We proposed a set of comparison criteria which covers the entire process of causal knowledge engineering, including modeling, representation, and reasoning. These criteria are usability, expressiveness, reasoning capability, formality, and soundness. The results of comparison have revealed some important facts about the characteristics of FCM and BBN, which will help to determine how FCM and BBN should be used, with respect to each other, in causal knowledge engineering.

A Window-Based Classification of Stream Data (스트림 데이터의 윈도우 기반 분류)

  • Kim, Sung-Hyun;Lee, Yong-Mi;Jin, Long;Seo, Sung-Bo;Ryu, Keun-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.11a
    • /
    • pp.47-50
    • /
    • 2005
  • 센서와 모바일 기술의 발달로 인해 다양한 센서에서 수집된 스트림 데이터를 처리하는 연구들이 많이 수행되고 있다. 다차원 속성의 스트림 데이터는 센서에서 주기적으로 수집되어 버퍼링 후 처리되기 때문에 기존의 투플 기반의 데이터 분류 기법에 적합하지 않다. 따라서 이 논문에서는 윈도우 기반의 스트림 데이터 분류를 위해 각 속성의 평균과 표준편차 값을 이용하여 투플 기반으로 변환하는 기법을 제안한다. 제안된 기법의 타당성은 투플 기반 데이터 분류 기법(의사결정트리, 단순 베이지안 분류기, 베이지안 신뢰 네트워크)에 의한 정확도 측정에 기반 한다. 로봇에서 수집된 센서 데이터를 이용한 실험 결과, 높은 정확도로 제안된 기법이 타당함을 증명하였으며 베이지안 신뢰 네트워크 기법이 다른 기법에 비해 우수함을 발견하였다.

  • PDF

A Study on Traceability Management Using Bayesian Network (베이지안 네트워크를 이용한 이력추적관리 방법에 관한 연구)

  • Cho soung-jin;Her Chul-hoi;Chung Hwan-Mook
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.331-334
    • /
    • 2005
  • 임베디드 기술의 발전과 유비쿼터스 환경이 점차 확산되면서 상품의 유통 과정이 다양하게 변화되고 있다. 상품에 대한 소비자의 요구는 생산정보를 직접 확인하고 상품을 구매할 수 있도록 하여 다양한 문제 발생시 원산지와 유통경로를 추적할 수 있는 이력 추적 관리 시스템(Traceability Management System)이 요구되고 있다. 본 논문에서는 유비쿼터스 환경에서 상품에 대한 신뢰성을 향상시키고 생산자의 정보 및 제조, 유통과정을 소비자가 추적할 수 있도록 베이지안 네트워크를 이용하여 상품의 이력추적관리 방법을 제안하고 시뮬레이션을 통하여 확인하였다.

  • PDF

Bayesian Reliability Estimation for the Multi-Processor Systems with Multiport Memory Interconnection Networks Structure (다중포트 기억 상호연결 네트워크 구조를 하는 다중프로세서 시스템의 베이지안 신뢰도 추정)

  • 조옥래
    • Journal of the Korea Society of Computer and Information
    • /
    • v.4 no.1
    • /
    • pp.68-75
    • /
    • 1999
  • In this paper, we propose a Baysian method estimating system reliability which is more effective and precise than conventional methods using prior information. This technique estimates system reliabilities that an entire system and multiprocessing system is normally working in multiprocessor system and multiple port connected memory architecture. The reason is why internetwork with multiprocessor system is mainly connected as multiple bus structure, crossbar switching structure and multiport connected memory structure.

  • PDF

Selective Inference in Modular Bayesian Networks for Lightweight Context Inference in Cell Phones (휴대폰에서의 경량 상황추론을 위한 모듈형 베이지안 네트워크의 선택적 추론)

  • Lee, Seung-Hyun;Lim, Sung-Soo;Cho, Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.10
    • /
    • pp.736-744
    • /
    • 2010
  • Log data collected from mobile devices contain diverse and meaningful personal information. However, it is not easy to implement a context-aware mobile agent using this personal information due to the inherent limitation in mobile platform such as memory capacity, computation power and its difficulty of analysis of the data. We propose a method of selective inference for modular Bayesian Network for context-aware mobile agent with effectiveness and reliability. Each BN module performs inference only when it can change the result by comparing to the history module which contains evidences and posterior probability, and gets results effectively using a method of influence score of the modules. We adopt memory decay theory and virtual linking method for the evaluation of the reliability and conservation of casual relationship between BN modules, respectively. Finally, we confirm the usefulness of the proposed method by several experiments on mobile phones.

Facial Behavior Rcognition Using Geometric Relations of Bayesian Network (베이지안 네트워크에서 기하학적 관계를 이용한 얼굴 동작 인식)

  • Youn, Young-Ji;Jeoung, You-Sun;Shin, Bo-Kyoung;Kim, Hye-Min;Park, Dong-Suk;Park, Ho-Sik;Bae, Cheol-Soo;Ra, Sang-Dong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.477-480
    • /
    • 2007
  • 얼굴 동작을 효과적으로 인식하는 방법을 제안하고자 한다. 얼굴 동작은 얼굴 표정, 얼굴 자세, 시선, 주름 같은 얼굴 특징이나 얼굴 행동 등으로 표출될 수 있다. 이러한 표출된 정보들은 얼굴 동작이 다양하고 명확하지 않아 연구 진행에 많은 어려움이 있다. 그러므로, 본 논문에서는 얼굴 동작을 묘사하는 FACS를 기반으로 하여 시각적 관찰에 의해 주요한 얼굴 동작을 표현하고, 베이지안 네트워크를 통하여 여러 정보를 분석 융합하여 얼굴 행동을 추론 할 수 있도록 하였다. 베이지안 네트워크의 하향식 추론으로 시각 정보를 선택 할 수 있고, 관측된 현상을 토대로 상향식 추론 하여 얼굴 동작의 신뢰 전파를 통하여 분류 인식한다.

  • PDF

Constrained Learning Method of Bayesian Network Structure for Efficient Context Classification (효율적인 컨텍스트 분류를 위한 베이지안 네트워크 구조의 제한 학습)

  • 황금성;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.112-114
    • /
    • 2004
  • 지능형 로봇 에이전트 기술이 발전하면서 서비스 질을 높이기 위한 방법으로 컨텍스트의 활용성이 부각되고 있다. 하지만 컨텍스트 분류 기술들은 아직까지 초기 개발 단계이며 다양한 방법들이 시도되고 있다. 본 논문에서는 전문가의 지식과 학습된 지식을 함께 적용할 수 있고 사람이 그 내용을 이해하기 유리한 베이지안 네트워크(BN)를 이용한 컨텍스트 분류 방법을 제안한다. 일반적인 BN 구조 학습에 사전 지식 및 방향성, 연결 관계 범위를 부여할 수 있는 제한(Constraint)을 적용한 효율적인 컨텍스트 분류 방법을 소개하고, 몇 가지 비교 실험을 통해 기존 방법에 비해 전문가의 개입이 줄어들고 좀 더 신뢰성 있는 컨텍스트 분류기를 얻을 수 있음을 보인다.

  • PDF

Fault Localization for Self-Managing Based on Bayesian Network (베이지안 네트워크 기반에 자가관리를 위한 결함 지역화)

  • Piao, Shun-Shan;Park, Jeong-Min;Lee, Eun-Seok
    • The KIPS Transactions:PartB
    • /
    • v.15B no.2
    • /
    • pp.137-146
    • /
    • 2008
  • Fault localization plays a significant role in enormous distributed system because it can identify root cause of observed faults automatically, supporting self-managing which remains an open topic in managing and controlling complex distributed systems to improve system reliability. Although many Artificial Intelligent techniques have been introduced in support of fault localization in recent research especially in increasing complex ubiquitous environment, the provided functions such as diagnosis and prediction are limited. In this paper, we propose fault localization for self-managing in performance evaluation in order to improve system reliability via learning and analyzing real-time streams of system performance events. We use probabilistic reasoning functions based on the basic Bayes' rule to provide effective mechanism for managing and evaluating system performance parameters automatically, and hence the system reliability is improved. Moreover, due to large number of considered factors in diverse and complex fault reasoning domains, we develop an efficient method which extracts relevant parameters having high relationships with observing problems and ranks them orderly. The selected node ordering lists will be used in network modeling, and hence improving learning efficiency. Using the approach enables us to diagnose the most probable causal factor with responsibility for the underlying performance problems and predict system situation to avoid potential abnormities via posting treatments or pretreatments respectively. The experimental application of system performance analysis by using the proposed approach and various estimations on efficiency and accuracy show that the availability of the proposed approach in performance evaluation domain is optimistic.

Bayesian networks-based probabilistic forecasting of hydrological drought considering drought propagation (가뭄의 전이 현상을 고려한 수문학적 가뭄에 대한 베이지안 네트워크 기반 확률 예측)

  • Shin, Ji Yae;Kwon, Hyun-Han;Lee, Joo-Heon;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.11
    • /
    • pp.769-779
    • /
    • 2017
  • As the occurrence of drought is recently on the rise, the reliable drought forecasting is required for developing the drought mitigation and proactive management of water resources. This study developed a probabilistic hydrological drought forecasting method using the Bayesian Networks and drought propagation relationship to estimate future drought with the forecast uncertainty, named as the Propagated Bayesian Networks Drought Forecasting (PBNDF) model. The proposed PBNDF model was composed with 4 nodes of past, current, multi-model ensemble (MME) forecasted information and the drought propagation relationship. Using Palmer Hydrological Drought Index (PHDI), the PBNDF model was applied to forecast the hydrological drought condition at 10 gauging stations in Nakdong River basin. The receiver operating characteristics (ROC) curve analysis was applied to measure the forecast skill of the forecast mean values. The root mean squared error (RMSE) and skill score (SS) were employed to compare the forecast performance with previously developed forecast models (persistence forecast, Bayesian network drought forecast). We found that the forecast skill of PBNDF model showed better performance with low RMSE and high SS of 0.1~0.15. The overall results mean the PBNDF model had good potential in probabilistic drought forecasting.

A Study of Threat Evaluation using Learning Bayesian Network on Air Defense (베이지안 네트워크 학습을 이용한 방공 무기 체계에서의 위협평가 기법연구)

  • Choi, Bomin;Han, Myung-Mook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.715-721
    • /
    • 2012
  • A threat evaluation is the technique which decides order of priority about tracks engaging with enemy by recognizing battlefield situation and making it efficient decision making. That is, in battle situation of multiple target it makes expeditious decision making and then aims at minimizing asset's damage and maximizing attack to targets. Threat value computation used in threat evaluation is calculated by sensor data which generated in battle space. Because Battle situation is unpredictable and there are various possibilities generating potential events, the damage or loss of data can make confuse decision making. Therefore, in this paper we suggest that substantial threat value calculation using learning bayesian network which makes it adapt to the varying battle situation to gain reliable results under given incomplete data and then verify this system's performance.