• 제목/요약/키워드: 베이지안 변수 선택

검색결과 30건 처리시간 0.02초

데이터마이닝의 베이지안 망 기법을 이용한 교통수단선택 모형의 설계 및 구축 (Design and Implementation of Travel Mode Choice Model Using the Bayesian Networks of Data Mining)

  • 김현기;김강수;이상민
    • 대한교통학회지
    • /
    • 제22권2호
    • /
    • pp.77-86
    • /
    • 2004
  • 데이터마이닝 (Data Mining)은 대용량의 데이터에 존재하는 관계, 패턴, 규칙 등을 효율적으로 탐색하여 이를 모형화함으로써, 유용한 정보로 추출 변환하는 일련의 과정이다. 특히 베이지안 망 (Bayesian Network)은 신경망, 유전자알고리즘 퍼지이론 등과 더불어 데이터마이닝의 중요한 기법 중의 하나로서 베이지안 통계 이론(Bayesian Statistics Theory)를 적용하여 변수들간의 확률적인 관계를 기호화함으로써, 설명변수들과 종속변수들간의 인과관계를 파악할 수 있다. 이 연구는 기존에 적용된 바가 없는 데이터마이닝의 베이지안 망을 이용하여 수도권 교통수단선택 모형을 구축한다. 2002년도 수도권 가구통행실태조사 자료의 사회 경제적 특성과 교통체계 특성을 반영하여 베이지안 망을 이용한 교통수단선택 모형을 설계 구축하여, 각 변수들간의 상관관계와 인과관계를 분석함으로써, 설명변수인 성과 연령의 구성비가 변하였을 때, 교통수단선택의 변화율(확률)을 예측한다. 이 연구를 통해 현실에서는 내재하나 설명변수간의 복잡한 상관성을 배제하고 설명변수들과 교통수단선택간의 단순한 직선관계를 가정하는 기존 교통수단선택 모형의 한계를 극복할 수 있는 가능성을 제시한다. 또한 선택되지 않은 교통수단에 대한 정보의 부족으로 인한 교통수단선택 모형 구축의 어려움을 극복한다. 또한 다양한 교통정책에 따른 교통수단선택의 변화를 실시간으로 시뮬레이션 할 수 있는 방법론을 개발한다.

베이지안 변수선택을 이용한 한국 수익률곡선 추정 (Estimation of the Korean Yield Curve via Bayesian Variable Selection)

  • 구병수
    • 경제분석
    • /
    • 제26권1호
    • /
    • pp.84-132
    • /
    • 2020
  • 중앙은행은 수익률곡선을 바탕으로 미래 수익률에 대한 시장의 기대를 추론한다. 통화 정책의 유효성 제고를 위하여, 시장이 예상하는 미래 수익률의 움직임을 정확히 파악할 필요가 있기 때문이다. 이에 따라 그동안 수익률곡선과 시장기대를 정확하게 추정하기 위한 다양한 모형들이 활용되었다. 이와 함께 채권시장의 발달로 채권시장과 거시경제간의 상호 연관성이 높아지면서 수익률 곡선에 영향을 미치는 거시변수가 무엇인지 파악하는 것이 매우 중요해졌다. 그러나 수익률 결정요인에 관한 다양한 이론이 있는 만큼 그동안의 선행연구에서는 수익률곡선 추정 모형에 포함되는 거시변수들이 서로 달랐다. 이는 수익률곡선을 추정하는 데 있어 어떤 변수를 포함한 모형이 바람직한가에 관한 문제, 즉 모형 불확실성이 존재한다는 것을 의미한다. 이러한 상황에서 본 연구는 수익률곡선과 미래 수익률에 대한 시장기대를 정교하게 추정하기 위해 동태적 Nelson-Siegel 모형에 베이지안 변수선택 방법을 적용하였다. 베이지안 변수선택은 모형에 포함되는 중요한 변수를 선험적으로 결정하는 데 따르는 문제들을 완화하고 모형 불확실성을 추정에 효율적으로 반영하는 포괄적인 방법이라는 점에서 바람직한 추정방법이 될 수 있다. 베이지안 변수선택 모형과 선행연구의 모형들을 비교한 결과 모형에 어떤 거시변수를 포함하느냐에 따라 도출되는 미래 수익률에 대한 시장기대가 상당히 다르게 나타났다. 이는 모형 불확실성이 추정결과에 큰 영향을 미치며 이를 추정에 반영하는 것이 타당하다는 것을 의미한다. 베이지안 변수선택 모형의 예측력이 선행연구의 다른 모형들보다 우월한 것으로 나타난 점도 이를 뒷받침한다. 따라서 모형 불확실성이 추정에 영향을 미치는 상황에서 수익률곡선과 시장기대 추정의 정확성 제고를 위해 베이지안 변수선택 모형을 활용하는 것이 바람직할 것으로 판단된다.

제한조건이 있는 선형회귀 모형에서의 베이지안 변수선택 (Bayesian Variable Selection in Linear Regression Models with Inequality Constraints on the Coefficients)

  • 오만숙
    • 응용통계연구
    • /
    • 제15권1호
    • /
    • pp.73-84
    • /
    • 2002
  • 계수에 대한 부등 제한조건이 있는 선형 회귀모형은 경제모형에서 가장 흔하게 다루어지는 것 중의 하나이다. 이는 특정 설명변수에 대한 계수의 부호를 음양 중 하나로 제한하거나 계수들에 대하여 순서적 관계를 주기 때문이다. 본 논문에서는 이러한 부등 제한이 있는 선형회귀 모형에서 유의한 설명변수의 선택을 해결하는 베이지안 기법을 고려한다. 베이지안 변수선택은 가능한 모든 모형의 사후확률 계산이 요구되는데 본 논문에서는 이러한 사후확률들을 동시에 계산하는 방법을 제시한다. 구체적으로 가장 일반적인 모형의 모수에 대한 사후표본을 깁스 표본기법을 적용시켜 얻은 후 이를 이용하여 모든 가능한 모형의 사후확률을 계산하고 실제적인 자료에 본 논문에서 제안된 방법을 적용시켜 본다.

정규확률변수 관측치열에 대한 베이지안 변화점 분석 : 서울지역 겨울철 평균기온 자료에의 적용 (Bayesian Change Point Analysis for a Sequence of Normal Observations: Application to the Winter Average Temperature in Seoul)

  • 김경숙;손영숙
    • 응용통계연구
    • /
    • 제17권2호
    • /
    • pp.281-301
    • /
    • 2004
  • 본 논문에서는 일변량 정규분포를 따르는 확률변수의 관측치열에 대한 변화점 문제(change point problem)를 고찰한다. 변화점의 존재유무, 그리고 만일 변화점이 존재한다면 어떠한 유형으로 발생했는지 즉, 변화점 발생 이후로 평균만 변화, 분산만 변화, 또는 평균과 분산 모두가 변화했는지를 밝힌다. 가능한 여러 유형의 변화모형들 가운데 최적의 모형을 선택하기 위해 베이지안 모형선택 기법을 이용하고, 선택된 모형에 내재된 모수를 추정 하기 위해 메트로폴리스-혜스팅스 알고리 즘을 포함한 깁스샘플링 을 이용한다. 이러한 방법론은 모의실험을 통해 검토되고, 또한 서울지역의 겨울철 평균기온 자료에 적용된다.

베이지안 네트워크를 이용한 행동기반 에이전트의 목적추론 (Goal Inference of Behavior-Based Agent Using Bayesian Network)

  • 김경중;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (2)
    • /
    • pp.349-351
    • /
    • 2002
  • 베이지안 네트워크는 변수들간의 원인-결과 관계를 확률적으로 모델링하기 위한 도구로서 소프트웨어 사용자의 목적을 추론하기 위해 널리 이용된다. 행동기반 로봇 설계는 반응적(reactive) 행동 모듈을 효과적으로 결합하여 복잡한 행동을 생성하기 위한 접근 방법이다. 행동의 결합은 로봇의 목표, 외부환경, 행동들 사이의 관계를 종합적으로 고려하여 동적으로 이루어진다. 그러나 현재의 결합 모델은 사전에 설계자에 의해 구조가 결정되는 고정적인 형태이기 때문에 환경의 변화에 맞게 목표를 변화시키지 못한다. 본 연구에서는 베이지안 네트워크를 이용하여 현재 상황에 가장 적합한 로봇의 목표를 설정하여 유연한 행동선택을 유도한다. Khepera 이동로봇 시뮬레이터를 이용하여 실험을 수행해 본 결과 베이지안 네트워크를 적용한 모델이 상황에 적합하게 목적을 선택하여 문제를 해결하는 것을 알 수 있었다.

  • PDF

지수 생존 모형에서의 베이지안 모형 선택 (Bayesian model selection in exponential survival models)

  • 정윤식;김미숙
    • 응용통계연구
    • /
    • 제15권1호
    • /
    • pp.57-71
    • /
    • 2002
  • 본 논문에서는 지수생존 모형의 형태들로써 단순 지수모형, 변환 점 지수모형과 유한 혼합 지수모형 등 세 가지 모형을 소개한다. 이러한 모형들 중에서, 최적의 모형을 찾기 위하여 Gelfand와 Ghosh(1998)의 방법을 이용한 모형 선택 방법을 제안한다. 이때, 계산상의 어려움을 피하기 위하여 자료 확장 기법(Tanner와 Wong, 1987)과 깁스 샘플러(Gelfand와 Smith, 1990)를 사용하였다. 제안된 베이지안 방법을 설명하기 위하여 모의 실험 자료와Stangl의 항 우울제 자료에 적용한다. 모형 선택 방법은 사전 분포와 모형 선택 기준의 가중치에 민감하지 않다는 것을 제한된 우리의 실험으로 알 수 있었다.

희박 공분산 행렬에 대한 베이지안 변수 선택 방법론 비교 연구 (A comparison study of Bayesian variable selection methods for sparse covariance matrices)

  • 김봉수;이경재
    • 응용통계연구
    • /
    • 제35권2호
    • /
    • pp.285-298
    • /
    • 2022
  • 연속 수축 사전분포는 spike and slab 사전분포와 더불어, 희박 회귀계수 벡터 또는 공분산 행렬에 대한 베이지안 추론을 위해 널리 사용되고 있다. 특히 고차원 상황에서, 연속 수축 사전분포는 spike and slab 사전분포에 비해 매우 작은 모수공간을 가짐으로써 계산적인 이점을 가진다. 하지만 연속 수축 사전분포는 정확히 0인 값을 생성하지 않기 때문에, 이를 이용한 변수 선택이 자연스럽지 않다는 문제가 있다. 비록 연속 수축 사전분포에 기반한 변수 선택 방법들이 개발되어 있기는 하지만, 이들에 대한 포괄적인 비교연구는 거의 진행되어 있지 않다. 본 논문에서는, 연속 수축 사전분포에 기반한 두 가지의 변수 선택 방법들을 비교하려 한다. 첫 번째 방법은 신용구간에 기반한 변수 선택, 두 번째 방법은 최근 Li와 Pati (2017)가 개발한 sequential 2-means 알고리듬이다. 두 방법에 대한 간략한 소개를 한 뒤, 다양한 모의실험 상황에서 자료를 생성하여 두 방법들의 성능을 비교하였다. 끝으로, 모의실험으로부터 발견한 몇 가지 사실들을 기술하고, 이로부터 몇 가지 제안을 하며 논문을 마치려 한다.

Reversible Jump MCMC와 베이지안망 학습에 의한 데이터마이닝 (Data Mining Using Reversible Jump MCMC and Bayesian Network Learning)

  • 하선영;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 가을 학술발표논문집 Vol.27 No.2 (2)
    • /
    • pp.90-92
    • /
    • 2000
  • 데이터마이닝 문제는 데이터를 그 속성들에 따라 분류하여 예측하는 것뿐만 아니라 분류된 속성들간의 연관성에 대해 잘 설명할 수 있어야 한다. 일반적으로 변수들간의 연관성을 잘 설명할 수 있으면서도 높은 예측력을 가지는 방법으로는 베이지안 네트웍 분류자(Bayesian network classifier)가 있다. 그러나 이것은 데이터 마이닝과 같은 대용량 데이터에서는 성능이 떨어지는 단점이 있다. 이에 이 논문에서는 최근 RBF 신경망이 입력변수 선정문제에 성공적으로 적용된 Reversible Jump Markov Chain Monte Carlo 방법을 이용하여 최적의 입력변수들만을 선택하여 베이지안 네트웍을 학습하는 Selective BN Augmented Naive-Bayes Classifier를 새로운 방안으로 제안하고 이를 실제 데이터마이닝 문제에 적용한 결과를 제시한다.

  • PDF

메타분석에서 그룹화 임의효과 모형의 베이지안 해석

  • 정윤식;정호진
    • 응용통계연구
    • /
    • 제13권1호
    • /
    • pp.81-96
    • /
    • 2000
  • 본 논문은 의학분야에서 주로 사용되는 메타분석 중 그룹화 임의효과 모형(grouped random effects model)을 프라빗 연결함수(probit link function)를 이용하여 베이즈적 관점에서 연구하였다. 이때 프라빗 함수를 강요하기 위해 잠재변수를 정의하였고, 사전 분포를 달리한 세가지 모형을 고려하였다. 주어진 세가지 모형들에게서 적합한 모형 선택을 위하여 베이즈 인자(Bayes factor, BF)와 유사베이즈 인자(pseudo-Bayes factor, PsBF)를 이용하였다. 깁스샘플러와 메트로폴리스 알고리즘을 이용하여 베이지안 계산상의 어려움을 해결하였다. 예로써, 새로운 간질약에 대한 효과를 조사하기 위하여 앞에서 제시된 방법으로 해석하였다.

  • PDF

전력계통한계가격 변동성 결정요인 분석: 베이지안 변수선택 방법 (What determines the Electricity Price Volatility in Korea?)

  • 이서진;김영민
    • 자원ㆍ환경경제연구
    • /
    • 제31권3호
    • /
    • pp.393-417
    • /
    • 2022
  • 전력시장 도매가격인 전력계통한계가격(System Marginal Price, SMP)의 급등락은 발전 사업자들의 재생에너지 및 기존 신규 발전설비에 대한 투자 결정을 변경하거나 지연시켜 에너지 정책 실현에 부정적인 영향을 미칠 수 있다. 이 연구는 2016~2020년 시간별 데이터를 활용하여 우리나라 SMP 주간 실현 변동성을 측정하고 결정요인을 파악함으로써 SMP 급등락 현상에 대한 정보 제공을 목적으로 한다. 국면전환(regime-switching)을 베이지안 변수선택(Bayesian stochastic selection) 모형에 적용하여 추정한 결과, SMP 고변동·저변동 국면 모두에서 기저 발전인 석탄 및 원자력 발전과 재생에너지인 태양광 발전의 증가는 SMP 변동성을 심화시키고, 가스발전량과 LNG 가격 변화는 고변동 국면에서만 SMP 변동성을 감소시키는 것으로 나타났다. 이러한 결과는 탄소 중립이나 에너지 전환 정책에 따른 재생에너지의 점진적인 확대가 SMP 변동성을 확대할 수 있지만, 재생에너지의 간헐성을 보완하기 위한 가스발전의 증가나 탄소 중립을 위한 석탄발전 감축은 SMP 변동성 증가를 상쇄시키는 역할을 할 수 있음을 시사한다.