데이터마이닝 (Data Mining)은 대용량의 데이터에 존재하는 관계, 패턴, 규칙 등을 효율적으로 탐색하여 이를 모형화함으로써, 유용한 정보로 추출 변환하는 일련의 과정이다. 특히 베이지안 망 (Bayesian Network)은 신경망, 유전자알고리즘 퍼지이론 등과 더불어 데이터마이닝의 중요한 기법 중의 하나로서 베이지안 통계 이론(Bayesian Statistics Theory)를 적용하여 변수들간의 확률적인 관계를 기호화함으로써, 설명변수들과 종속변수들간의 인과관계를 파악할 수 있다. 이 연구는 기존에 적용된 바가 없는 데이터마이닝의 베이지안 망을 이용하여 수도권 교통수단선택 모형을 구축한다. 2002년도 수도권 가구통행실태조사 자료의 사회 경제적 특성과 교통체계 특성을 반영하여 베이지안 망을 이용한 교통수단선택 모형을 설계 구축하여, 각 변수들간의 상관관계와 인과관계를 분석함으로써, 설명변수인 성과 연령의 구성비가 변하였을 때, 교통수단선택의 변화율(확률)을 예측한다. 이 연구를 통해 현실에서는 내재하나 설명변수간의 복잡한 상관성을 배제하고 설명변수들과 교통수단선택간의 단순한 직선관계를 가정하는 기존 교통수단선택 모형의 한계를 극복할 수 있는 가능성을 제시한다. 또한 선택되지 않은 교통수단에 대한 정보의 부족으로 인한 교통수단선택 모형 구축의 어려움을 극복한다. 또한 다양한 교통정책에 따른 교통수단선택의 변화를 실시간으로 시뮬레이션 할 수 있는 방법론을 개발한다.
중앙은행은 수익률곡선을 바탕으로 미래 수익률에 대한 시장의 기대를 추론한다. 통화 정책의 유효성 제고를 위하여, 시장이 예상하는 미래 수익률의 움직임을 정확히 파악할 필요가 있기 때문이다. 이에 따라 그동안 수익률곡선과 시장기대를 정확하게 추정하기 위한 다양한 모형들이 활용되었다. 이와 함께 채권시장의 발달로 채권시장과 거시경제간의 상호 연관성이 높아지면서 수익률 곡선에 영향을 미치는 거시변수가 무엇인지 파악하는 것이 매우 중요해졌다. 그러나 수익률 결정요인에 관한 다양한 이론이 있는 만큼 그동안의 선행연구에서는 수익률곡선 추정 모형에 포함되는 거시변수들이 서로 달랐다. 이는 수익률곡선을 추정하는 데 있어 어떤 변수를 포함한 모형이 바람직한가에 관한 문제, 즉 모형 불확실성이 존재한다는 것을 의미한다. 이러한 상황에서 본 연구는 수익률곡선과 미래 수익률에 대한 시장기대를 정교하게 추정하기 위해 동태적 Nelson-Siegel 모형에 베이지안 변수선택 방법을 적용하였다. 베이지안 변수선택은 모형에 포함되는 중요한 변수를 선험적으로 결정하는 데 따르는 문제들을 완화하고 모형 불확실성을 추정에 효율적으로 반영하는 포괄적인 방법이라는 점에서 바람직한 추정방법이 될 수 있다. 베이지안 변수선택 모형과 선행연구의 모형들을 비교한 결과 모형에 어떤 거시변수를 포함하느냐에 따라 도출되는 미래 수익률에 대한 시장기대가 상당히 다르게 나타났다. 이는 모형 불확실성이 추정결과에 큰 영향을 미치며 이를 추정에 반영하는 것이 타당하다는 것을 의미한다. 베이지안 변수선택 모형의 예측력이 선행연구의 다른 모형들보다 우월한 것으로 나타난 점도 이를 뒷받침한다. 따라서 모형 불확실성이 추정에 영향을 미치는 상황에서 수익률곡선과 시장기대 추정의 정확성 제고를 위해 베이지안 변수선택 모형을 활용하는 것이 바람직할 것으로 판단된다.
계수에 대한 부등 제한조건이 있는 선형 회귀모형은 경제모형에서 가장 흔하게 다루어지는 것 중의 하나이다. 이는 특정 설명변수에 대한 계수의 부호를 음양 중 하나로 제한하거나 계수들에 대하여 순서적 관계를 주기 때문이다. 본 논문에서는 이러한 부등 제한이 있는 선형회귀 모형에서 유의한 설명변수의 선택을 해결하는 베이지안 기법을 고려한다. 베이지안 변수선택은 가능한 모든 모형의 사후확률 계산이 요구되는데 본 논문에서는 이러한 사후확률들을 동시에 계산하는 방법을 제시한다. 구체적으로 가장 일반적인 모형의 모수에 대한 사후표본을 깁스 표본기법을 적용시켜 얻은 후 이를 이용하여 모든 가능한 모형의 사후확률을 계산하고 실제적인 자료에 본 논문에서 제안된 방법을 적용시켜 본다.
본 논문에서는 일변량 정규분포를 따르는 확률변수의 관측치열에 대한 변화점 문제(change point problem)를 고찰한다. 변화점의 존재유무, 그리고 만일 변화점이 존재한다면 어떠한 유형으로 발생했는지 즉, 변화점 발생 이후로 평균만 변화, 분산만 변화, 또는 평균과 분산 모두가 변화했는지를 밝힌다. 가능한 여러 유형의 변화모형들 가운데 최적의 모형을 선택하기 위해 베이지안 모형선택 기법을 이용하고, 선택된 모형에 내재된 모수를 추정 하기 위해 메트로폴리스-혜스팅스 알고리 즘을 포함한 깁스샘플링 을 이용한다. 이러한 방법론은 모의실험을 통해 검토되고, 또한 서울지역의 겨울철 평균기온 자료에 적용된다.
베이지안 네트워크는 변수들간의 원인-결과 관계를 확률적으로 모델링하기 위한 도구로서 소프트웨어 사용자의 목적을 추론하기 위해 널리 이용된다. 행동기반 로봇 설계는 반응적(reactive) 행동 모듈을 효과적으로 결합하여 복잡한 행동을 생성하기 위한 접근 방법이다. 행동의 결합은 로봇의 목표, 외부환경, 행동들 사이의 관계를 종합적으로 고려하여 동적으로 이루어진다. 그러나 현재의 결합 모델은 사전에 설계자에 의해 구조가 결정되는 고정적인 형태이기 때문에 환경의 변화에 맞게 목표를 변화시키지 못한다. 본 연구에서는 베이지안 네트워크를 이용하여 현재 상황에 가장 적합한 로봇의 목표를 설정하여 유연한 행동선택을 유도한다. Khepera 이동로봇 시뮬레이터를 이용하여 실험을 수행해 본 결과 베이지안 네트워크를 적용한 모델이 상황에 적합하게 목적을 선택하여 문제를 해결하는 것을 알 수 있었다.
본 논문에서는 지수생존 모형의 형태들로써 단순 지수모형, 변환 점 지수모형과 유한 혼합 지수모형 등 세 가지 모형을 소개한다. 이러한 모형들 중에서, 최적의 모형을 찾기 위하여 Gelfand와 Ghosh(1998)의 방법을 이용한 모형 선택 방법을 제안한다. 이때, 계산상의 어려움을 피하기 위하여 자료 확장 기법(Tanner와 Wong, 1987)과 깁스 샘플러(Gelfand와 Smith, 1990)를 사용하였다. 제안된 베이지안 방법을 설명하기 위하여 모의 실험 자료와Stangl의 항 우울제 자료에 적용한다. 모형 선택 방법은 사전 분포와 모형 선택 기준의 가중치에 민감하지 않다는 것을 제한된 우리의 실험으로 알 수 있었다.
연속 수축 사전분포는 spike and slab 사전분포와 더불어, 희박 회귀계수 벡터 또는 공분산 행렬에 대한 베이지안 추론을 위해 널리 사용되고 있다. 특히 고차원 상황에서, 연속 수축 사전분포는 spike and slab 사전분포에 비해 매우 작은 모수공간을 가짐으로써 계산적인 이점을 가진다. 하지만 연속 수축 사전분포는 정확히 0인 값을 생성하지 않기 때문에, 이를 이용한 변수 선택이 자연스럽지 않다는 문제가 있다. 비록 연속 수축 사전분포에 기반한 변수 선택 방법들이 개발되어 있기는 하지만, 이들에 대한 포괄적인 비교연구는 거의 진행되어 있지 않다. 본 논문에서는, 연속 수축 사전분포에 기반한 두 가지의 변수 선택 방법들을 비교하려 한다. 첫 번째 방법은 신용구간에 기반한 변수 선택, 두 번째 방법은 최근 Li와 Pati (2017)가 개발한 sequential 2-means 알고리듬이다. 두 방법에 대한 간략한 소개를 한 뒤, 다양한 모의실험 상황에서 자료를 생성하여 두 방법들의 성능을 비교하였다. 끝으로, 모의실험으로부터 발견한 몇 가지 사실들을 기술하고, 이로부터 몇 가지 제안을 하며 논문을 마치려 한다.
데이터마이닝 문제는 데이터를 그 속성들에 따라 분류하여 예측하는 것뿐만 아니라 분류된 속성들간의 연관성에 대해 잘 설명할 수 있어야 한다. 일반적으로 변수들간의 연관성을 잘 설명할 수 있으면서도 높은 예측력을 가지는 방법으로는 베이지안 네트웍 분류자(Bayesian network classifier)가 있다. 그러나 이것은 데이터 마이닝과 같은 대용량 데이터에서는 성능이 떨어지는 단점이 있다. 이에 이 논문에서는 최근 RBF 신경망이 입력변수 선정문제에 성공적으로 적용된 Reversible Jump Markov Chain Monte Carlo 방법을 이용하여 최적의 입력변수들만을 선택하여 베이지안 네트웍을 학습하는 Selective BN Augmented Naive-Bayes Classifier를 새로운 방안으로 제안하고 이를 실제 데이터마이닝 문제에 적용한 결과를 제시한다.
본 논문은 의학분야에서 주로 사용되는 메타분석 중 그룹화 임의효과 모형(grouped random effects model)을 프라빗 연결함수(probit link function)를 이용하여 베이즈적 관점에서 연구하였다. 이때 프라빗 함수를 강요하기 위해 잠재변수를 정의하였고, 사전 분포를 달리한 세가지 모형을 고려하였다. 주어진 세가지 모형들에게서 적합한 모형 선택을 위하여 베이즈 인자(Bayes factor, BF)와 유사베이즈 인자(pseudo-Bayes factor, PsBF)를 이용하였다. 깁스샘플러와 메트로폴리스 알고리즘을 이용하여 베이지안 계산상의 어려움을 해결하였다. 예로써, 새로운 간질약에 대한 효과를 조사하기 위하여 앞에서 제시된 방법으로 해석하였다.
전력시장 도매가격인 전력계통한계가격(System Marginal Price, SMP)의 급등락은 발전 사업자들의 재생에너지 및 기존 신규 발전설비에 대한 투자 결정을 변경하거나 지연시켜 에너지 정책 실현에 부정적인 영향을 미칠 수 있다. 이 연구는 2016~2020년 시간별 데이터를 활용하여 우리나라 SMP 주간 실현 변동성을 측정하고 결정요인을 파악함으로써 SMP 급등락 현상에 대한 정보 제공을 목적으로 한다. 국면전환(regime-switching)을 베이지안 변수선택(Bayesian stochastic selection) 모형에 적용하여 추정한 결과, SMP 고변동·저변동 국면 모두에서 기저 발전인 석탄 및 원자력 발전과 재생에너지인 태양광 발전의 증가는 SMP 변동성을 심화시키고, 가스발전량과 LNG 가격 변화는 고변동 국면에서만 SMP 변동성을 감소시키는 것으로 나타났다. 이러한 결과는 탄소 중립이나 에너지 전환 정책에 따른 재생에너지의 점진적인 확대가 SMP 변동성을 확대할 수 있지만, 재생에너지의 간헐성을 보완하기 위한 가스발전의 증가나 탄소 중립을 위한 석탄발전 감축은 SMP 변동성 증가를 상쇄시키는 역할을 할 수 있음을 시사한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.