• Title/Summary/Keyword: 베이지안 구조학습

Search Result 33, Processing Time 0.036 seconds

An Efficient Learning Method for Large Bayesian Networks using Clustering (클러스터링을 이용한 효율적인 대규모 베이지안 망 학습 방법)

  • Jung Sungwon;Lee Kwang H.;Lee Doheon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.700-702
    • /
    • 2005
  • 본 논문에서는 대규모 베이지안 망을 빠른 시간 안에 학습하기 위한 방법으로, 클러스터링을 이용한 방법을 제안한다. 제안하는 방법은 베이지안 구조 학습에 있어서 DAG(Directed Acyclic Graph)를 탐색하는 영역을 제한하기 위해 클러스터링을 사용한다. 기존의 베이지안 구조 학습 방법들이 고려하는 후보 DAG의 수가 전체 노드 수에 의해 제한되는 데 반해, 제안되는 방법에서는 미리 정해진 클러스터의 최대 크기에 의해 제한된다. 실험 결과를 통해, 제안하는 방법이 기존의 대규모 베이지안 망 학습에 활용되었던 SC(Sparse Candidate) 방법 보다 훨씬 적은 수의 후보 DAG만을 고려하였음에도 불구하고, 비슷한 정도의 정확도를 나타냄을 보인다.

  • PDF

Quantitative Annotation of Edges in Bayesian Networks with Condition-Specific Data (베이지안 망 연결 구조에 대한 데이터 군집별 기여도의 정량화 방법에 대한 연구)

  • Jeong, Seong-Won;Lee, Do-Heon;Lee, Gwang-Hyeong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.85-88
    • /
    • 2007
  • 본 연구에서는 베이지안 망 구조 학습에서, 학습 데이터의 특정 부분집합이 학습된 망의 각연결 구조(edge)의 형성에 기여하는 정도를 정량화하는 방법을 제안한다. 생물학 정보의 분석 등에 베이지안 망 학습을 이용하는 경우, 제안된 방법은 망의 각 연결 구조의 형성에 특정 군집 데이터가 기여하는 정도의 정량화가 가능하다. 제안된 방법의 유효성을 보이기 위해, 벤치마크 베이지안 망을 이용하여 제안된 방법이 망 연결 구조에 대한 데이터 군집별 기여도를 효과적으로 정량화 할 수 있음을 보인다.

  • PDF

Quantitative Annotation of Edges, in Bayesian Networks with Condition-Specific Data (베이지안 망 연결 구조에 대한 데이터 군집별 기여도의 정량화 방법에 대한 연구)

  • Jung, Sung-Won;Lee, Do-Heon;Lee, Kwang-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.3
    • /
    • pp.316-321
    • /
    • 2007
  • We propose a quatitative annotation method for edges in Bayesian networks using given sets of condition-specific data. Bayesian network model has been used widely in various fields to infer probabilistic dependency relationships between entities in target systems. Besides the need for identifying dependency relationships, the annotation of edges in Bayesian networks is required to analyze the meaning of learned Bayesian networks. We assume the training data is composed of several condition-specific data sets. The contribution of each condition-specific data set to each edge in the learned Bayesian network is measured using the ratio of likelihoods between network structures of including and missing the specific edge. The proposed method can be a good approach to make quantitative annotation for learned Bayesian network structures while previous annotation approaches only give qualitative one.

A Diagnosis Engine Using Bayesian Network for Self-management of Adaptive Middleware (적응형 미들웨어의 자가 진단을 위한 베이지안 네트워크를 사용한 진단엔진)

  • Choi Bo-Yoon;Kim Kyung-Joong;Cho Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06a
    • /
    • pp.220-222
    • /
    • 2006
  • 분산 어플리케이션은 동시에 여러 사용자가 각기 다른 환경에서 동기화된 프로세서를 사용하기 때문에 일정 한 성능을 유지하는 것이 무엇보다 중요하다. 진단엔진은 시스템을 진단하여 시스템 결함의 원인을 발견하여 시스템이 자가치료가 가능하게 한다. 적응형 미들웨어는 진단엔진을 사용해서 분산 어플리케이션이 로컬환경에 맞는 고른 서비스를 유지 할 수 있도록 한다. 본 논문은 베이지안 네트워크를 사용한 적응형 미들웨어의 진단엔진을 제안한다. 베이지안 네트워크는 상황인지분야에서 널리 사용되는 추론기법으로서, 수집 된 데이터를 통해서 그 구조를 학습하고 데이터를 증거 값으로 시스템 진단을 한다. 본 논문은 실험 대상자로부터 윈도우시스템에서 두 시간 동안 데이터를 수집하여 한 시간은 베이지안 네트워크 학습에 사용하고, 나머지는 베이지안 네트워크 성능평가에 사용하였다. 실험 결과 학습된 두 개의 베이지안 네트워크 모델은 각각 95.41%, 99.77%의 정확성을 보였다.

  • PDF

Speciated evolution of Bayesian networks ensembles for robust inference (안정된 추론을 위한 베이지안 네트워크 앙상블의 종분화 진화)

  • 유지오;김경중;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.226-228
    • /
    • 2004
  • 베이지안 네트워크는 불확실한 상황을 모델링하기 위한 확률 기반의 모델이다. 베이지안 네트워크의 구조를 자동 학습하기 위한 연구가 많이 있었고, 최근에는 진화 알고리즘을 이용한 연구가 많이 진행되고 있다. 그러나 대부분은 마지막 세대의 가장 좋은 개체만을 이용하고 있다. 시스템이 요구하는 다양한 요구조건을 하나의 적합도 평가 수식으로 나타내기 어렵기 때문에, 마지막 세대의 가장 좋은 개체는 종종 편향되거나 변화하는 환경에 덜 적응적일 수 있다. 본 논문에서는 적합도 공유 방법으로 다양한 베이지안 네트워크를 생성하고, 이를 베이즈 규칙을 통해 결합하여 변화하는 환경에 적응적인 추론 모델을 구축할 수 있는 방법을 제안한다. 성능 평가를 위해 ALARM 네트워크에서 인공적으로 생성한 데이터를 이용한 구조 학습 및 추론 실험을 수행하였다. 다양한 조건에서 학습된 네트워크를 실험한 결과, 제안한 방법이 변화하는 환경에서 더욱 강건하고 적응적인 모델을 생성할 수 있음을 확인한 수 있었다.

  • PDF

A BN-based Recommendation System Reflecting User's Preference in Mobile Devices (모바일 장비에서 사용자의 선호도를 반영한 베이지안 네트워크 기반 추천 시스템)

  • Park, Moon-Hee;Cho, Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06c
    • /
    • pp.277-280
    • /
    • 2007
  • 무선통신의 발달에 따라 모바일 장비 기반의 이동성을 고려한 서비스에 관한 연구가 활발하다. 모바일 장비는 제한된 화면크기, 부족한 리소스 등의 한계와 함께 사용자의 이동 중에 발생하는 이벤트를 처리해야 한다는 문제가 있기 때문에, 사용자에게 친숙한 인터페이스와 개별화된 추천 서비스가 요구된다. 본 논문에서는 사용자의 선호도를 반영한 베이지안 네트워크를 이용하여 모바일 장비에서 개인화된 추천 시스템을 개발한다. 실시간으로 변화하는 환경에 적응하도록 네트워크를 설계하기 위하여 전문가에 의해 구조를 설계하고, 수집된 사용자 로그를 바탕으로 파라메터를 학습하여 베이지안 네트워크 모델을 생성한 후, 학습된 모델 기반의 추론결과를 실제 컨텐츠와 비교하여 시스템에 매핑시킴으로써 사용자에게 추천한다. 실제 신촌지역 음식점 추천을 대상으로 실험한 결과, 그 가능성을 확인할 수 있었다.

  • PDF

Search Space Analysis of R-CORE Method for Bayesian Network Structure Learning and Its Effectiveness on Structural Quality (R-CORE를 통한 베이지안 망 구조 학습의 탐색 공간 분석)

  • Jung, Sung-Won;Lee, Do-Heon;Lee, Kwang-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.4
    • /
    • pp.572-578
    • /
    • 2008
  • We analyze the search space considered by the previously proposed R-CORE method for learning Bayesian network structures of large scale. Experimental analysis on the search space of the method is also shown. The R-CORE method reduces the search space considered for Bayesian network structures by recursively clustering the random variables and restricting the orders between clusters. We show the R-CORE method has a similar search space with the previous method in the worst case but has a much less search space in the average case. By considering much less search space in the average case, the R-CORE method shows less tendency of overfitting in learning Bayesian network structures compared to the previous method.

Learning Predictive Models of Memory Landmarks based on Attributed Bayesian Networks Using Mobile Context Log (모바일 컨텍스트 로그를 사용한 속성별 베이지안 네트워크 기반의 랜드마크 예측 모델 학습)

  • Lee, Byung-Gil;Lim, Sung-Soo;Cho, Sung-Bae
    • Korean Journal of Cognitive Science
    • /
    • v.20 no.4
    • /
    • pp.535-554
    • /
    • 2009
  • Information collected on mobile devices might be utilized to support user's memory, but it is difficult to effectively retrieve them because of the enormous amount of information. In order to organize information as an episodic approach that mimics human memory for the effective search, it is required to detect important event like landmarks. For providing new services with users, in this paper, we propose the prediction model to find landmarks automatically from various context log information based on attributed Bayesian networks. The data are divided into daily and weekly ones, and are categorized into attributes according to the source, to learn the Bayesian networks for the improvement of landmark prediction. The experiments on the Nokia log data showed that the Bayesian method outperforms SVMs, and the proposed attributed Bayesian networks are superior to the Bayesian networks modelled daily and weekly.

  • PDF

The performance of Bayesian network classifiers for predicting discrete data (이산형 자료 예측을 위한 베이지안 네트워크 분류분석기의 성능 비교)

  • Park, Hyeonjae;Hwang, Beom Seuk
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.3
    • /
    • pp.309-320
    • /
    • 2020
  • Bayesian networks, also known as directed acyclic graphs (DAG), are used in many areas of medicine, meteorology, and genetics because relationships between variables can be modeled with graphs and probabilities. In particular, Bayesian network classifiers, which are used to predict discrete data, have recently become a new method of data mining. Bayesian networks can be grouped into different models that depend on structured learning methods. In this study, Bayesian network models are learned with various properties of structure learning. The models are compared to the simplest method, the naïve Bayes model. Classification results are compared by applying learned models to various real data. This study also compares the relationships between variables in the data through graphs that appear in each model.

Learning Distribution Graphs Using a Neuro-Fuzzy Network for Naive Bayesian Classifier (퍼지신경망을 사용한 네이브 베이지안 분류기의 분산 그래프 학습)

  • Tian, Xue-Wei;Lim, Joon S.
    • Journal of Digital Convergence
    • /
    • v.11 no.11
    • /
    • pp.409-414
    • /
    • 2013
  • Naive Bayesian classifiers are a powerful and well-known type of classifiers that can be easily induced from a dataset of sample cases. However, the strong conditional independence assumptions can sometimes lead to weak classification performance. Normally, naive Bayesian classifiers use Gaussian distributions to handle continuous attributes and to represent the likelihood of the features conditioned on the classes. The probability density of attributes, however, is not always well fitted by a Gaussian distribution. Another eminent type of classifier is the neuro-fuzzy classifier, which can learn fuzzy rules and fuzzy sets using supervised learning. Since there are specific structural similarities between a neuro-fuzzy classifier and a naive Bayesian classifier, the purpose of this study is to apply learning distribution graphs constructed by a neuro-fuzzy network to naive Bayesian classifiers. We compare the Gaussian distribution graphs with the fuzzy distribution graphs for the naive Bayesian classifier. We applied these two types of distribution graphs to classify leukemia and colon DNA microarray data sets. The results demonstrate that a naive Bayesian classifier with fuzzy distribution graphs is more reliable than that with Gaussian distribution graphs.