• Title/Summary/Keyword: 베이지안네트워크

Search Result 276, Processing Time 0.024 seconds

Development of Near miss Assessment Model Using Bayesian Network and Derivation of Major Causes (베이지안 네트워크를 이용한 아차사고 평가 모델 개발 및 주요 원인 도출)

  • Seon Yeong Ha;Mi Jeong Lee;Jong-Bae Baek
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.4
    • /
    • pp.54-59
    • /
    • 2023
  • The relationship between near misses and major accidents can be confirmed using the ratios proposed by Heinrich and Bird. Systematic reviews of previous national and international studies did not reveal the assessment process used in near-miss management systems. In this study, a model was developed for assessing near misses and major factors were derived through case application. By reviewing national and international literature, 14 factors were selected for each dimension of the P2T (people, procedure, technology) model. To identify the causal relationship between accidents and these factors, a near-miss assessment model was developed using a Bayesian network. In addition, a sensitivity analysis was conducted to derive the major factors. To verify the validity of the model, near-miss data obtained from the ethylene production process were applied. As a result, "PE2 (education)," "PR1 (procedure)," and "TE1 (equipment and facility not installed)" were derived as the major factors causing near misses in this process. If actual workplace data are applied to the near-miss assessment model developed in this study, results that are unique to the workplace can be confirmed. In addition, scientific safety management is possible only when priority is given through sensitivity analysis.

Development of Flood Forecasting and Warning Technique in a Tidal River Using Bayesian Network (감조하천의 Bayesian Network를 활용한 홍수 예·경보 기법 개발)

  • Lee, Myung Jin;Song, Jae Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.422-422
    • /
    • 2022
  • 최근 기후변화와 도시화 등의 영향으로 인해 전 지구적으로 홍수 피해의 규모와 홍수발생 빈도가 증가하고 있다. 특히, 전 세계 인구의 약 50% 이상이 거주하고 있는 연안지역의 홍수피해 위험성은 급격히 증가하고 있는 추세이며, 각 국가는 홍수 피해를 저감하고 예방하기 위한 노력을 지속적으로 기울이고 있다. 본 연구에서는 연안지역의 감조하천을 대상으로 홍수 예경보 의사결정기법을 개발하고자 하였다. 이를 위해 감조하천에서 관측된 수위는 조석에 의한 수위(조석 성분), 파고에 의한 수위(파고 성분), 강우에 의한 수위(강우-유출 성분), 그리고 잡음에 의한 수위(잡음 성분)의 4가지 수문 성분으로 구성되어 있다고 정의하였고, 감조하천의 예측 강우 성분에 해당하는 예측 수위를 추정하기 위해 수위-유량 관계 곡선식을 개발하고자 하였다. 또한 각 수문 성분별 위기 경보 단계를 설정하고, Bayesian Network를 활용하여 수문 성분들의 위험을 종합적으로 고려할 수 있는 홍수 예·경보 의사결정 기법을 개발하였다. 3가지 난수 발생 방법에 따라 Bayesian Network 모형을 통해 다양한 수문 조건에 따른 조건부 확률을 산정하였으며, 정확도 검토를 수행한 결과 F-1 Socre가 25.1%, 63.5% 및 82.3%의 정확도를 보였다. 향후 본 연구에서 제시한 방법론을 활용한다면 기상청에서 제공하고 있는 예측 강우 및 GRM 모형을 통해 유출량을 산정하고, 이를 예측 수위로 변환하여 연안 지역의 홍수 위험도 매트릭스를 통해 홍수 예·경보에 대한 의사결정을 수행할 수 있을 것으로 판단된다.

  • PDF

Development of Reliability Measurement Method and Tool for Nuclear Power Plant Safety Software (원자력 안전 소프트웨어 대상 신뢰도 측정 방법 및 도구 개발)

  • Lingjun Liu;Wooyoung Choi;Eunkyoung Jee;Duksan Ryu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.5
    • /
    • pp.227-235
    • /
    • 2024
  • Since nuclear power plants (NPPs) increasingly employ digital I&C systems, reliability evaluation for NPP software has become crucial for NPP probabilistic risk assessment. Several methods for estimating software reliability have been proposed, but there is no available tool support for those methods. To support NPP software manufacturers, we propose a reliability measurement tool for NPP software. We designed our tool to provide reliability estimation depending on available qualitative and quantitative information that users can offer. We applied the proposed tool to an industrial reactor protection system to evaluate the functionality of this tool. This tool can considerably facilitate the reliability assessment of NPP software.

Comparison of Dynamic Origin Destination Demand Estimation Models in Highway Network (고속도로 네트워크에서 동적기종점수요 추정기법 비교연구)

  • 이승재;조범철;김종형
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.5
    • /
    • pp.83-97
    • /
    • 2000
  • The traffic management schemes through traffic signal control and information provision could be effective when the link-level data and trip-level data were used simultaneously in analysis Procedures. But, because the trip-level data. such as origin, destination and departure time, can not be obtained through the existing surveillance systems directly. It is needed to estimate it using the link-level data which can be obtained easily. Therefore the objective of this study is to develop the model to estimate O-D demand using only the link flows in highway network as a real time. The methodological approaches in this study are kalman filer, least-square method and normalized least-square method. The kalman filter is developed in the basis of the bayesian update. The normalized least-square method is developed in the basis of the least-square method and the natural constraint equation. These three models were experimented using two kinds of simulated data. The one has two abrupt changing Patterns in traffic flow rates The other is a 24 hours data that has three Peak times in a day Among these models, kalman filer has Produced more accurate and adaptive results than others. Therefore it is seemed that this model could be used in traffic demand management. control, travel time forecasting and dynamic assignment, and so forth.

  • PDF

Rule-based and Probabilistic Event Recognition of Independent Objects for Interpretation of Emergency Scenarios (긴급 상황 시나리오 해석을 위한 독립 객체의 규칙 기반 및 확률적 이벤트 인식)

  • Lee, Jun-Cheol;Choi, Chang-Gyu
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.3
    • /
    • pp.301-314
    • /
    • 2008
  • The existing event recognition is accomplished with the limited systematic foundation, and thus much longer learning time is needed for emergency scenario interpretation due to large scale of probability data. In this paper, we propose a method for nile-based event recognition of an independent object(human) which extract a feature vectors from the object and analyze the behavior pattern of each object and interpretation of emergency scenarios using a probability and object's events. The event rule of an independent object is composed of the Primary-event, Move-event, Interaction-event, and 'FALL DOWN' event and is defined through feature vectors of the object and the segmented motion orientated vector (SMOV) in which the dynamic Bayesian network is applied. The emergency scenario is analyzed using current state of an event and its post probability. In this paper, we define diversified events compared to that of pre-existing method and thus make it easy to expand by increasing independence of each events. Accordingly, semantics information, which is impossible to be gained through an.

  • PDF

A Context-aware Messenger for Sharing User Contextual Information (사용자 컨텍스트 공유를 위한 상황인지 메신저)

  • Hong, Jin-Hyuk;Yang, Sung-Ihk;Cho, Sung-Bae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.9
    • /
    • pp.906-910
    • /
    • 2008
  • As the mobile environment becomes widely used, there is a growth on the concern about recognizing and sharing user context. Sharing context makes the interaction between human more plentiful as well as helps to keep a good social relationship. Recently, it has been applied to some messengers or mobile applications with sharing simple contexts, but it is still required to recognize and share more complex and diverse contexts. In this paper, we propose a context-aware messenger that collects various sensory information, recognizes representative user contexts such as emotion, stress, and activity by using dynamic Bayesian networks, and visualizes them. It includes a modular model that is effective to recognize various contexts and displays them in the form of icons. We have verified the proposed method with the scenario evaluation and usability test.

A Study of MES for the Product Tracking Based on RFID (제품추적을 위한 RFID기반 제조실행시스템에 대한 연구)

  • Kim, Bong-Seok;Lee, Hong-Chul
    • KSCI Review
    • /
    • v.14 no.2
    • /
    • pp.159-164
    • /
    • 2006
  • MES(Manufacturing Execution System) is a control system which supports basic activities(scheduling, working process and qualify management, etc) to execute working on the shop floor. As especially MES is a system to decrease the gap between production planning and operating, it executes functions that make decision between management and labor using real-time data. MES for real-time information processing requires certain conditions such as data modeling of RFID, which has recently attracted attentions, and monitoring of each product unit from manufacture to sales. However, in the middle of processing the unit with a RFID tag, transponders(readers) can't often read the tag due to reader's malfunctions, intentional damages, loss and the circumstantial effects; for that reason, users are unable to confirm the location of the product unit. In this case, users cannot avoid tracing the path of units with uncertain clues. In this paper, we suggest that the unique MES based on RFID and Bayesian Network can immediately track the product unit, and show how to evaluate it.

  • PDF

A dynamic Shortest Path Finding with Forecasting Result of Traffic Flow (교통흐름 예측 결과틀 적용한 동적 최단 경로 탐색)

  • Cho, Mi-Gyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.5
    • /
    • pp.988-995
    • /
    • 2009
  • One of the most popular services of Telematics is a shortest path finding from a starting point to a destination. In this paper, a dynamic shortest path finding system with forecasting result of traffic flow in the future was developed and various experiments to verify the performance of our system using real-time traffic information has been conducted. Traffic forecasting has been done by a prediction system using Bayesian network. It searched a dynamic shortest path, a static shortest path and an accumulated shortest path for the same starting point and destination and calculated their travel time to compare with one of its real shortest path. From the experiment, over 75%, the travel time of dynamic shortest paths is the closest to one of their real shortest paths than one of static shortest paths and accumulated shortest paths. Therefore, it is proved that finding a dynamic shortest path by applying traffic flows in the future for intermediated intersections can give more accurate traffic information and improve the quality of services of Telematics than finding a static shortest path applying by traffic flows of the starting time for intermediated intersections.

Comparative Effectiveness of Biologic DMARDs in Rheumatoid Arthritis Patients with Inadequate Response to conventional DMARDs: Using a Bayesian Network Meta-analysis (Conventional DMARDs 치료에 실패한 류마티스 관절염 환자에서 Biologic DMARDs의 임상적 효과 비교: 베이지안 네트워크 메타분석)

  • Park, Sun-Kyeong;Kim, Hye-Lin;Lee, Min-Young;Kim, Anna;Lee, Eui-Kyung
    • Korean Journal of Clinical Pharmacy
    • /
    • v.25 no.1
    • /
    • pp.9-17
    • /
    • 2015
  • Background: Biologic disease-modifying antirheumatic drugs (bDMARDs) extend the treatment choices for rheumatoid arthritis patients with insufficient response or intolerance to conventional DMARDs (cDMARDs). These agents have considerable efficacy compared with conventional DMARDs, but only a few head-to-head comparisons among these agents have been performed. The objective of this systematic review and network meta-analysis (NMA) was to compare the relative efficacy of Certolizumab with conventional DMARD to licensed bDMARD with cDMARD therapy for patients who failed to prior cDMARD treatment under the condition of the reimbursement coverage criteria in Korea. Methods: A systematic review was conducted using MEDLINE and Cochrane library. Key endpoints were the American College of Rheumatology (ACR) responses of 20/50/70 at six months. Bayesian outcomes were calculated as median of treatment effect, probability of the best, Odds Ratio (OR) and probability that OR was greater than one. Results: Compared with other bDMARDs, Certolizumab were associated with higher or comparable ACR response rates; in ACR20, the OR (probability of OR>1) was 2.08 (92.6%) for Adalimumab, 1.86 (85.7%) for Etanercept, 1.89 (79.5%) for Golimumab, 2.36 (92.1%) for Infliximab, 1.79 (87.0%) for Abatacept, 1.74 (80.8%) for Rituximab and 1.82 (86.8%) for Tocilizaumab. In ACR50 and ACR70, the ORs did not present significant differences. Conclusion: Certolizaumab with cDMARD was more effective or comparable than other bDMARDs in patients who failed prior cDMARD treatment.

Exploring the Feature Selection Method for Effective Opinion Mining: Emphasis on Particle Swarm Optimization Algorithms

  • Eo, Kyun Sun;Lee, Kun Chang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.11
    • /
    • pp.41-50
    • /
    • 2020
  • Sentimental analysis begins with the search for words that determine the sentimentality inherent in data. Managers can understand market sentimentality by analyzing a number of relevant sentiment words which consumers usually tend to use. In this study, we propose exploring performance of feature selection methods embedded with Particle Swarm Optimization Multi Objectives Evolutionary Algorithms. The performance of the feature selection methods was benchmarked with machine learning classifiers such as Decision Tree, Naive Bayesian Network, Support Vector Machine, Random Forest, Bagging, Random Subspace, and Rotation Forest. Our empirical results of opinion mining revealed that the number of features was significantly reduced and the performance was not hurt. In specific, the Support Vector Machine showed the highest accuracy. Random subspace produced the best AUC results.