• Title/Summary/Keyword: 베이시안 알고리즘

Search Result 26, Processing Time 0.035 seconds

Integrating Classification Method using PCM Algorithm and Bayesian Method (PCM 알고리즘과 베이시안 분류의 통합기법)

  • 전영준;김진일
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.790-792
    • /
    • 2004
  • 본 논문은 PCM(Possibilistic C-Means) 알고리즘과 베이시안 분류 알고리즘을 통합한 고해상도 위성영상의 효과적인 분류방법을 제안하였다. 제안된 알고리즘은 학습데이터를 참고로 하여 PCM 알고리즘을 반복적인 과정 없이 수행한다. 각 분류항목별로 분류된 데이터에서 평균내부거리 내부에 해당되는 데이터들을 선정하여 각 항목별 비율을 구한 후 베이시안 분류기법의 사전확률로 적용하여 분류를 수행한다 PCM 알고리즘은 각 데이터와 특정 클러스터와의 거리에 소속도를 부여하는 퍼지 C-Means 알고리즘과 달리 소속도를 각 데이터와 클러스터 중심간의 절대거리에 의존하는 방법으로 퍼지 C-Means 알고리즘이 가지는 상대성 문제를 해결하였다. 제안된 분류 기법을 고해상도 다중분광 데이터인 IKONOS 위성영상에 적용하여 분류를 수행한 후 최대우도 분류기법과 비교한다.

  • PDF

Calculating the Importance of Attributes in Naive Bayesian Classification Learning (나이브 베이시안 분류학습에서 속성의 중요도 계산방법)

  • Lee, Chang-Hwan
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.5
    • /
    • pp.83-87
    • /
    • 2011
  • Naive Bayesian learning has been widely used in machine learning. However, in traditional naive Bayesian learning, we make two assumptions: (1) each attribute is independent of each other (2) each attribute has same importance in terms of learning. However, in reality, not all attributes are the same with respect to their importance. In this paper, we propose a new paradigm of calculating the importance of attributes for naive Bayesian learning. The performance of the proposed methods has been compared with those of other methods including SBC and general naive Bayesian. The proposed method shows better performance in most cases.

Vocabulary Recognition Performance Improvement using a convergence of Bayesian Method for Parameter Estimation and Bhattacharyya Algorithm Model (모수 추정을 위한 베이시안 기법과 바타차랴 알고리즘을 융합한 어휘 인식 성능 향상)

  • Oh, Sang-Yeob
    • Journal of Digital Convergence
    • /
    • v.13 no.10
    • /
    • pp.353-358
    • /
    • 2015
  • The Vocabulary Recognition System made by recognizing the standard vocabulary is seen as a decline of recognition when out of the standard or similar words. In this case, reconstructing the system in order to add or extend a range of vocabulary is a way to solve the problem. This paper propose configured Bhattacharyya algorithm standing by speech recognition learning model using the Bayesian methods which reflect parameter estimation upon the model configuration scalability. It is recognized corrected standard model based on a characteristic of the phoneme using the Bayesian methods for parameter estimation of the phoneme's data and Bhattacharyya algorithm for a similar model. By Bhattacharyya algorithm to configure recognition model evaluates a recognition performance. The result of applying the proposed method is showed a recognition rate of 97.3% and a learning curve of 1.2 seconds.

Design and Implementation of a Face Authentication System (딥러닝 기반의 얼굴인증 시스템 설계 및 구현)

  • Lee, Seungik
    • Journal of Software Assessment and Valuation
    • /
    • v.16 no.2
    • /
    • pp.63-68
    • /
    • 2020
  • This paper proposes a face authentication system based on deep learning framework. The proposed system is consisted of face region detection and feature extraction using deep learning algorithm, and performed the face authentication using joint-bayesian matrix learning algorithm. The performance of proposed paper is evaluated by various face database , and the face image of one person consists of 2 images. The face authentication algorithm was performed by measuring similarity by applying 2048 dimension characteristic and combined Bayesian algorithm through Deep Neural network and calculating the same error rate that failed face certification. The result of proposed paper shows that the proposed system using deep learning and joint bayesian algorithms showed the equal error rate of 1.2%, and have a good performance compared to previous approach.

An Information-theoretic Approach for Value-Based Weighting in Naive Bayesian Learning (나이브 베이시안 학습에서 정보이론 기반의 속성값 가중치 계산방법)

  • Lee, Chang-Hwan
    • Journal of KIISE:Databases
    • /
    • v.37 no.6
    • /
    • pp.285-291
    • /
    • 2010
  • In this paper, we propose a new paradigm of weighting methods for naive Bayesian learning. We propose more fine-grained weighting methods, called value weighting method, in the context of naive Bayesian learning. While the current weighting methods assign a weight to an attribute, we assign a weight to an attribute value. We develop new methods, using Kullback-Leibler function, for both value weighting and feature weighting in the context of naive Bayesian. The performance of the proposed methods has been compared with the attribute weighting method and general naive bayesian. The proposed method shows better performance in most of the cases.

Gradient Descent Approach for Value-Based Weighting (점진적 하강 방법을 이용한 속성값 기반의 가중치 계산방법)

  • Lee, Chang-Hwan;Bae, Joo-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.17B no.5
    • /
    • pp.381-388
    • /
    • 2010
  • Naive Bayesian learning has been widely used in many data mining applications, and it performs surprisingly well on many applications. However, due to the assumption that all attributes are equally important in naive Bayesian learning, the posterior probabilities estimated by naive Bayesian are sometimes poor. In this paper, we propose more fine-grained weighting methods, called value weighting, in the context of naive Bayesian learning. While the current weighting methods assign a weight to each attribute, we assign a weight to each attribute value. We investigate how the proposed value weighting effects the performance of naive Bayesian learning. We develop new methods, using gradient descent method, for both value weighting and feature weighting in the context of naive Bayesian. The performance of the proposed methods has been compared with the attribute weighting method and general Naive bayesian, and the value weighting method showed better in most cases.

Development of Intelligent Diagnosis System using Fuzzy Classifier (퍼지 분류기를 이용한 지능형 차단 시스템 개발)

  • Sung, Hwa-Chang;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1785-1786
    • /
    • 2008
  • 본 논문에서는 저압 배선 진단 시스템 구축을 위한 퍼지-베이시안 분류기 기반 지능형 차단 시스템 개발을 목표로 한다. Time-Frequency Domain Reflectometry (TFDR)방법이 바탕이 되어 도선의 이상 상태를 측정하게 되며, 진단 부분에서 받은 정보를 능동적으로 해석하고 이상 유무에 따른 차단의 역할을 수행하는 시스템 개발이 최종 목표이다. 제안하고자 하는 분류 알고리즘은 퍼지-베이시안 분류 알고리즘을 중심으로 구성되며, 분류하고자 하는 도선의 이상상태인 damage, open 그리고 short에 대한 분류 기준을 마련하고자 한다. 또한, 실제 저압 배선에서 얻어진 데이터를 바탕으로 퍼지 분류 규칙의 생성 및 분류 알고리즘 생성을 구체화하여 좀 더 나은 성능의 분류기를 개발하고자 하는 것이 본 논문의 목표이다.

  • PDF

Development Intelligent Diagnosis System for Detecting Fault of Transmission Line (저압 배선 이상 진단을 위한 지능형 차단 시스템 구축)

  • Sung, Hwa-Chang;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.4
    • /
    • pp.518-523
    • /
    • 2008
  • In this paper, we present the development of an intelligent diagnosis system for detecting faults of the transmission line. Based on the TFDR (Time-Frequency Domain Reflectometry), the fault detecting performs to measure the location of fault line. We analyze the reflected signal which is sent from the wire detecting system and classify the fault type of the wires by using intelligent diagnosis system. In order to analyze effectively, we construct the intelligent diagnosis system which is based on the fuzzy-bayesian algorithm. Finally, we provide the simulation results which are performed at transmission line to evaluate the feasibility and generality of the proposed method in this paper.

Vocabulary Recognition Model using a convergence of Likelihood Principla Bayesian methode and Bhattacharyya Distance Measurement based on Vector Model (벡터모델 기반 바타챠랴 거리 측정 기법과 우도 원리 베이시안을 융합한 어휘 인식 모델)

  • Oh, Sang-Yeob
    • Journal of Digital Convergence
    • /
    • v.13 no.11
    • /
    • pp.165-170
    • /
    • 2015
  • The Vocabulary Recognition System made by recognizing the standard vocabulary is seen as a decline of recognition when out of the standard or similar words. The vector values of the existing system to the model created by configuring the database was used in the recognition vocabulary. The model to be formed during the search for the recognition vocabulary is recognizable because there is a disadvantage not configured with a database. In this paper, it induced to recognize the vector model is formed by the search and configuration using a Bayesian model recognizes the Bhattacharyya distance measurement based on the vector model, by applying the Wiener filter improves the recognition rate. The result of Convergence of two method's are improved reliability experiments for distance measurement. Using a proposed measurement are compared to the conventional method exhibited a performance of 98.2%.

A Study on the Classification for Satellite Images using Hybrid Method (하이브리드 분류기법을 이용한 위성영상의 분류에 관한 연구)

  • Jeon, Young-Joon;Kim, Jin-Il
    • The KIPS Transactions:PartB
    • /
    • v.11B no.2
    • /
    • pp.159-168
    • /
    • 2004
  • This paper presents hybrid classification method to improve the performance of satellite images classification by combining Bayesian maximum likelihood classifier, ISODATA clustering and fuzzy C-Means algorithm. In this paper, the training data of each class were generated by separating the spectral signature using ISODATA clustering. We can classify according to pixel's membership grade followed by cluster center of fuzzy C-Means algorithm as the mean value of training data for each class. Bayesian maximum likelihood classifier is performed with prior probability by result of fuzzy C-Means classification. The results shows that proposed method could improve performance of classification method and also perform classification with no concern about spectral signature of the training data. The proposed method Is applied to a Landsat TM satellite image for the verifying test.