• 제목/요약/키워드: 베어링계수규명

검색결과 8건 처리시간 0.019초

공작기계 주축계의 베어링계수규명에 관한 연구 (Bearing Coefficient Identification of a Machine-Tool Spindle System)

  • 김석일;곽병만;이후상
    • 대한기계학회논문집
    • /
    • 제15권5호
    • /
    • pp.1426-1432
    • /
    • 1991
  • 본 연구에서는 Timoshenko보이론과 전달행렬법에 의해서 얻어지는 베어링의 반력들과 주축계의 불완전진동모드간의 선형관계를 이용하여 원리적으로 반복계산없이 반경방향과 굽힘모멘트방향의 선형등방성 베어링계수들을 규명하는 방법을 제안하였다. 제안된 규명방법은 주축계에 사용된 베어링의 수보다 진동모드에 대한 측정점의 수가 2배 이상 많아야 한다는 조건을 가지고 있다. 또한 선형 연립방정식으로 부터 직접 규명된 베어링계수들의 일부가 정보의 부정확성에 의해서 물리적으로 타당성이 없는 음수로 나타나는 경우에는 측정결과와의 차이를 최소화시키면서, 물리적으로 타당성이 있는 양수의 베어링계수들을 규명할 수 있는 방법이 제안조건들을 가진 최적화문제의 형태로 제시되었다. 그리고 제시된 최적화문제의 해는 선형화방법(linearization method)를 통해서 얻었다. 아울러서 주축계의 실험모델에 대한 가진실험결과를 이용 하여 제안된 규명방법의 유용성을 평가하였다.

최적화기법에 의한 베어링 동특성 계수의 규명 (Identification of Bearing Dynamic Coefficients Using Optimization Techniques)

  • 김용한;양보석;안영공;김영찬
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.520-525
    • /
    • 2003
  • The determination of unknown parameters in rotating machinery is a difficult task and optimization techniques represent an alternative technique for parameter identification. The Simulated Annealing(SA) and Genetic Algorithm(GA) are powerful global optimization algorithm. This paper proposes new hybrid algorithm which combined GA with SA and local search algorithm for the purpose of parameter identification. Numerical examples are also presented to verify the efficiency of proposed algorithm. And, this paper presents the general methodology based on hybrid algorithm to identify unknown bearing parameters of flexible rotors using measured unbalance responses. Numerical examples are used to ilustrate the methodology used, which is then validated experimentally.

  • PDF

범프 타입 포일 스러스트 베어링의 정하중 구조 강성 및 손실 계수 차이에 관한 실험적 연구 (On the Bearing-to-Bearing Variability in Experimentally Identified Structural Stiffnesses and Loss Factors of Bump-Type Foil Thrust Bearings under Static Loads)

  • 이성진;류근;정진희;류솔지
    • Tribology and Lubricants
    • /
    • 제36권6호
    • /
    • pp.332-341
    • /
    • 2020
  • High-speed turbomachinery implements gas foil bearings (GFBs) due to their distinctive advantages, such as high efficiency, lesser part count, and lower weight. This paper provides the test results of the static structural stiffnesses and loss factors of bump-type foil thrust bearings with increasing preload and bearing deflection. The focus of the current work is to experimentally quantify variability in structural stiffnesses and loss factors among the four test thrust bearings with identical design values and material of the bump and top foil geometries using the same (open-source) fabrication method. A simple test setup, using a rigidly mounted non-rotating shaft and thrust disk, measures the bearing bump deflections with increasing static loads on the test bearing. The inner and outer diameters of the test bearings are 41 mm and 81 mm, respectively. The loss factor, best-representing energy dissipation in the test bearings, is estimated from the area inside the local hysteresis loop of the load versus the bearing deflection curve. The measurements show that structural stiffnesses and loss factors of the test bearings significantly rely on applied preloads and bearing deflections. Local structural stiffnesses of the test bearings increase with applied preloads but decrease with bearing deflections. Changes of loss factors are less sensitive to applied preloads and bearing deflections compared to those of structural stiffnesses. Up to 35% variability in static load structural stiffnesses is found between bearings, while up to 30% variability in loss factors is found between bearings.

확장된 영향계수법을 이용한 능동자기베어링의 운전상황에서 측정체 진원도 오차 규명 (In-situ Runout Idientification in Active Magnetic Bearing System by Extended Influence Coefficient Method)

  • 김철순;이종원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1995년도 추계학술대회논문집; 한국종합전시장, 24 Nov. 1995
    • /
    • pp.154-159
    • /
    • 1995
  • In this study, an efficient, yet easy to use, in-situ runout identification scheme by using extended influence coefficient method is presented for active magnetic bearing(AMB) systems. It is shown experimentally that the proposed scheme successfully identifies and eliminates the troublesome runout of the well balanced AMB system in the laboratory so that a high precision spindle system can be achieved, while it is in operation.

  • PDF

자기베어링 시스템을 가진지로 이용한 스퀴즈 필름 댐퍼의 동강성 계수 규명 (Identification of Dynamic Stiffness of Squeeze Film Damper using Active Magnetic Bearing System as an Exciter)

  • Kim, Keun-Joo;Lee, Chong-Won
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.342.1-342
    • /
    • 2002
  • In this work, the dynamic characteristics of an oil-lubricated, short SFD with a central feeding groove are derived based on a theoretical analysis considering the effect of a groove. The validity of the analysis is investigated experimentally using an Active Magnetic Bearing (AMB) system as an exciter. For the theoretical solution, the fluid film forces of a grooved SFD are analytically derived so that the dynamic coefficients of a SFD are expressed in terms of its design parameters. (omitted)

  • PDF

자기 베어링 시스템을 가진기로 이용한 스퀴즈 필름 댐퍼의 동특성 계수 규명 (Identification of Dynamic Characteristics of Squeeze Film Damper Using Active Magnetic Bearing System as an Exciter)

  • 김근주;이종원
    • 한국소음진동공학회논문집
    • /
    • 제13권7호
    • /
    • pp.508-516
    • /
    • 2003
  • The dynamic characteristics of an ell-lubricated, short squeeze film damper (SFD) with a central feeding groove are derived based on a theoretical analysis considering the effect of a groove, and identified experimentally using an Active Magnetic Bearing (AMB) system as an exciter. In order to get the theoretical solution, the fluid film forces of the grooved SFD are analytically derived so that the dynamic coefficients of the SFD can be expressed in terms of its design parameters. For the experimental validation of the analysis, a test rig using an AMB as an exciter is proposed. As an exciter. the AMB represents a mechatronic device to levitate and position the test Journal without any mechanical contact, to generate relative motions of the Journal inside the tested SFD and to measure the generated displacements during experiments with fairly high accuracy. Using this test rig, experiments are extensively conducted with various values of clearance, which Is one of the most important design parameters. in order to investigate its effect on the dynamic characteristics and the performance of the SFD. Damping and Inertia coefficients of the SFD that are experimentally Identified are compared with the analytical results to demonstrate the effectiveness of the applied analysis. It Is also shown that the AMB is an ideal device for tests of SFDs.

자기베어링 시스템을 가진기로 이용한 스퀴즈 필름 댐퍼의 동강성 계수 규명 (Identification of Dynamic Stiffness of Squeeze Film Damper using Active Magnetic Bearing System as an Exciter)

  • 김근주;이종원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.381-387
    • /
    • 2002
  • In this work, the dynamic characteristics of an oil-lubricated, short SFD with a central feeding groove are derived based on a theoretical analysis considering the effect of a groove. The validity of the analysis is investigated experimentally using an Active Magnetic Bearing (AMB) system as an exciter. For the theoretical solution, the fluid film forces of a grooved SFD are analytically derived so that the dynamic coefficients of a SFD are expressed in terms of its design parameters. For the experimental validation of the analysis, a test rig using AMB as an exciter is proposed to identify the dynamic characteristics of a short SFD with a central groove. As an exciter, the AMB represents a mechatronic device to levitate and position the test journal without any mechanical contact, to generate relative motions of the journal inside the tested SFD and to measure the generated displacements during experiments with fairly high accuracy. Using this test rig, experiments are extensively conducted with different clearance, which is one of the most important design parameters, in order to investigate its effect on the dynamic characteristics and the performance of SFDs. Damping and inertia coefficients of the SFD that are experimentally identified are compared with the analytical results to demonstrate the effectiveness of the analysis. It is also shown that AMB is an ideal device for tests of SFDs.

  • PDF

자동차 터보차저 베어링 시스템에 적용되는 스퀴즈 필름 댐퍼의 동적계수 측정을 위한 실험장치 개발 (Test Rig Development for Identification of Rotordynamic Force Coefficients of Squeeze Film Dampers in Automotive Turbocharger Bearing Systems)

  • 황지수;류근;정승화
    • Tribology and Lubricants
    • /
    • 제34권1호
    • /
    • pp.33-41
    • /
    • 2018
  • This paper describes a new test rig for identification of rotordynamic force coefficients of squeeze film dampers (SFDs) in automotive turbochargers (TCs). Prior studies have mainly concentrated on relatively large-sized SFDs used in aircraft engines, turbocompressors, and turbopumps. The main objective of the current study is to propose a test rig for identification of dynamic force coefficients of small-sized SFDs (a journal diameter of ~11 mm). The current test rig consists of a journal, a SFD cartridge, four support rods, an upper structure, a data acquisition (DAQ) system, and an oil circulation unit. The annular gaps between the journal outer surface and SFD cartridge inner surface create SFD film lands. The damper has two parallel film lands separated by a central groove, having an axial length and depth of 3 mm. Each film land has a length of 4 mm with a $40{\mu}m$ radial clearance. The static load and dynamic impact tests identify the structural characteristics (i.e., stiffness and natural frequency) of the journal and assembled test rig. The measurements show good agreement with predictions. The SFD performance data from this test rig will be used to develop innovative TC rotor systems with improved NVH and reliability characteristics incorporating advanced SFD technology.