• Title/Summary/Keyword: 베벨로이드 기어

Search Result 3, Processing Time 0.016 seconds

A Study on the Design Automation and Machining Technology of Spiroid Bevel Reduction Gear (스피로이드 베벨 기어 감속기의 설계 자동화 및 가공 기술에 관한 연구)

  • Lee, Chun-Man;Ryu, Mi-Ra
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.7
    • /
    • pp.141-146
    • /
    • 2002
  • In this paper, we developed an automated program for the design and machining of spiroid bevel gear, A computer program employing the theory of gearing between gear and pinion is developed to design spiroid bevel gear mechanism. A new method fur machining spiroid bevel gears is proposed, and effectviely used for two examples.

A Study on 3D Modeling & Stress Analysis of Helical Conical Involute Gear (헬리컬 코니칼 인볼류트기어의 3D 모델링과 치면 응력해석에 관한 연구)

  • Kang, Jai-Hwa;Lee, Do-Young;Kim, Jun-Sung;Xu, Zhe-Zhu;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.1
    • /
    • pp.45-51
    • /
    • 2014
  • Generally, marine transmissions contain straight shafts and helical gears, meaning that enginerooms require more space. In order to guarantee a levelengine space for conical involute gears or beveloid gears, both of which are important machine parts, a conical gear was used to replace the traditional cylinder gear. Owing to weak points such as the point contact phenomenon of the teeth, a limitation of the width of each tooth in terms of the addendum, the variational modification coefficient,and the difficulty of processing, research about conical involute gears remains at a standstill. Along with the increasing number of applications of conical involute gears, research on conical gear design technology is necessary. In this paper, in an effort to enhance conical gear design technology, research on the 3D modeling and stress analyses of helical conical involute gears were done.

Study on the Total Design of a Conical Involute Gear (코니칼 인볼류트 기어의 Total 설계에 관한 연구)

  • Kim, Jun-Seong;Lee, Do-Young;Kang, Jai-Hwa;Xu, Zhe-Zhu;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.100-107
    • /
    • 2014
  • Currently, there are many power transmission devices, including gears, friction wheels, chains, and belts. Because the power transmission of gears is most certainin these devices, gears are widely used in different power transmission fields and environments. In accordance with the gear shape, gears can be classified as cylindrical gears and conical gears. A cylindrical gear, which provides a means of power transmission under parallel axis and skewed axis conditions, contains a spur gear, a helical gear and a worm gear. A conical gear, which can be used on a skewed axis as well as parallel and crossed axes, includes a bevel gear(e.g., straight bevel, spiral bevel, hypoid gear) and a conical involute gear(or a bevel oid gear). In this paper, a conical involute gear which utilizes the fabrication method of other involute gears such as spur and helical gears using a CNC hobbing machine is discussed.