• Title/Summary/Keyword: 베드 온도

Search Result 62, Processing Time 0.026 seconds

Allowable Amount of Bed Inventory in a 300 MW Class Circulating Fluidized Bed Boiler (300 MW 급 유동층보일러에서 적정 층 물질량 산정)

  • Kim, Woo-Yong;Yoo, Ho-seon
    • Plant Journal
    • /
    • v.14 no.2
    • /
    • pp.33-38
    • /
    • 2018
  • The CFB boilers technology is facing a number of challenges. Among them, boiler tube erosion, sintering by bed inventory overheating and high self consumed service power are major ones. This study was conducted to obtain allowable bed inventory with the Yeosu Power Plant, a 300 MW class CFB boiler. For the test, bed pressure was reduced from design pressure of 4.5 KPa to 2.5 KPa by reducing bed inventory, at fixed turbine output, coal consumption rate and air flow. Consequently, reducing the lower bed inventory is effective to decrease bed temperature but excessive reducing might increase bed temperature due to lack of circulating fluidized materials. Also, in case of the Yeosu Plant boiler using subbituminous coal as its primary fuel, its bed temperature change is highly affected by not only the amount of bed inventory, but also the boiler capacity and coal contents.

  • PDF

Optimal Measuring Point Selection Method of Indoor Temperature using CFD Analysis (CFD 해석을 이용한 실내 온도 최적 측정 위치 선정 방법)

  • Lee, Min-Goo;Jung, Kyung-Kwon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.7
    • /
    • pp.1559-1566
    • /
    • 2012
  • This paper proposed the method to find out the optimal sensing point of temperature in test-bed with the sensor of temperature, such as real residence. We selected optimal locations by checking temperature change which was simulated by the means of CFD (Computational Fluid Dynamics) and the variation of air flow. We made 3-dimensional model of the testbed using DesignBuilder software, and ran the CFD. We selected the optimum temperature measurement location of 1.5 m height from the floor and low temperature variation. The experiments were conducted 30 temperature and humidity sensors in real place. After that, we confirmed the results of temperature change.

Analysis and Improvement of Growing Environment of Two Tier Cropping Systems in Plastic Film House (플라스틱 온실내 2단 재배 시스템의 생육환경분석 및 개선)

  • 김문기;김기성
    • Journal of Bio-Environment Control
    • /
    • v.8 no.1
    • /
    • pp.49-55
    • /
    • 1999
  • This study aims at analyzing environment factors of two tier cropping systems and suggesting effective structures of two tier cropping systems. The environment factors in two tier cropping systems are temperature, relative humidity, solar radiation, temperature of nutrient solution, and wind velocity. Especially, The most important factors are the solar radiation and the solar incident area between the two tiers. During the experiment, observations were made of the two levels in the plastic greenhouse. The highest temperatures were 38.3$^{\circ}C$ in the top level and, 35.5$^{\circ}C$ in the bottom level, respectively. The temperature of the nutrient solution between the two levels showed little difference. The relative humidity in the top level was 60~7o% and that in the bottom 65~80%, exhibiting that the bottom is approximately 10% higher. Change of photosynthetic photon flux density and solar radiation both have a tendency to be similar. The wind velocities for both levels were recorded at 0.1m.s$^{-1}$ in the afternoon and 0.05m.s$^{-1}$ in the evening. The solar incident areas in the bottom level increased by approximately 25% at an East-West position and 17.7% at a South-North position, respectively.

  • PDF

Modeling of Medium Temperature Drops of the Elevated-bench Hydroponics for Strawberry Cultivation during Low Temperature Season (저온기 딸기 고설 수경재배시 온실기온에 따른 배지내 온도강하 모델 개발)

  • Park, Jae-Wan;Ha, Yu-Shin;Kim, Ki-Dong;Park, Dae-Heum;Lee, Ki-Myung;Jun, Ha-Joon;Kwon, Soon-Gu;Choi, Won-Sik;Chung, Sung-Won
    • Journal of Bio-Environment Control
    • /
    • v.19 no.3
    • /
    • pp.123-129
    • /
    • 2010
  • A study on modeling of medium temperature drops of the elevated-bench hydroponic system for strawberry cultivation during low temperature season was conducted. Four different conditions were used for the experiment. These consisted of two kinds of bed types (plant, V), four kinds of medium (rice, perlite, rice hulls80% and peatmoss20%, perlite80% and peatmoss20%), two kinds of mulched bed (mulched, non mulched) and four kinds of greenhouse air temperature (l.5, 3.2, 5.0, $6.7^{\circ}C$), and the results were summarized as follows: Temperature drop of medium in the V-bed was slower than that in the plant bed, showing better insulation effect of V-bed. Temperature drop of medium with mulching on the top of the bed was slower than the case without mulching, as a result, the beneficial effect of temperature drop was appeared in mulched bed. Linear regression of the temperature descent rate and the temperature difference between medium and air showed significant correlation. The regression equation for the Pearlite80% and Peatmoss20% in the V-bed was f(x) = -0.2656 + 0.1345x at the $R^2$ of 0.9269. Using the model, the temperature drop during night can be predicted for the various media at the different depths.

CFD Analysis Based Optimal Temperature Measurement (CFD 해석 기반 실내 최적 온도 계측)

  • Lee, Min-Goo;Park, Yong-Kuk;Jung, Kyung-Kwon;Yoo, Jun-Jae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.735-738
    • /
    • 2011
  • This paper proposed the method to find out the optimal sensing point of temperature in test-bed with the sensor of temperature, such as real residence. We selected optimal locations by checking temperature change which was simulated by the means of CFD (Computational Fluid Dynamics) and the variation of air flow. We installed 30 temperature sensors in real place. After that, we compared the real one with the result of simulation.

  • PDF

Thermal Phenomena of an N2O Catalyst Bed for Hybrid Rockets Using a Porous Medium Approach (다공성 매질 접근법을 적용한 하이브리드 로켓 N2O 촉매 점화기의 열적 현상)

  • 유우준;김수종;김진곤;장석필
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.9
    • /
    • pp.89-96
    • /
    • 2006
  • In this study, fluid flow and thermal characteristics in a catalyst bed for nitrous oxide catalytic decomposition which is introduced as a hybrid rocket ignition system for small satellites were theoretically considered. To analyze the thermal phenomena of the catalyst bed, a so-called porous medium approach has been opted for modeling the honeycomb geometry of the catalyst bed. Using a Brinkman-extended Darcy model for fluid flow and the one-equation model for heat transfer, the analytical solutions for both velocity and temperature distributions in the catalyst bed are obtained and compared with experimental data to validate the porous medium approach. Based on the analytical solutions, parameters of engineering importance are identified to be the porosity of the catalyst bed, effective volumetric ratio, the ratio of the radius of the catalyst bed to the radius of a pore, heat flux generated by a heater, and pumping power. Their effects on thermal phenomena of the catalyst bed are studied.

선박 충돌위험도 식별 시스템의 성능 시험

  • Son, Nam-Seon;Pyo, Chun-Seon;Lee, Chan-Su;O, Chang-Hyeon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2012.06a
    • /
    • pp.496-498
    • /
    • 2012
  • 선박이 운항중 타선과의 충돌상황을 효과적으로 신속하게 파악하는 데 도움을 줌으로써 선박 충돌사고를 방지하기 위한 선박충돌위험도 식별시스템을 개발하였다. 지난 연구에서는, 고안된 시스템의 성능을 검증하기 위해 부산항에서 일어난 제품운반선과 화물선간의 충돌사고의 실제 AIS 데이터를 이용한 재생시뮬레이션을 수행한 바 있다. 본 논문에서는 선박충돌위험도 식별 시스템의 테스트베드를 구축하였고, 실제 해상에서 AIS 신호를 이용하여 성능을 검증해 보고자 하였다. 이를 위해, 군산항과 인천항의 연안여객선에 테스트베드를 장착하고, 실제 운항중 AIS 정보를 이용하여, 실시간으로 선박충돌위험도 식별시스템의 온보드 시험을 수행하였다. 본 논문에서는 선박충돌위험도 식별 시스템의 테스트베드의 특징과, 실제 해상에서 수행된 온보드 시험 결과에 대해 소개하였다.

  • PDF

Effects of Production of Ever-bearing Strawberries Using Cool Air from Mushroom Cultivation House (버섯재배시설의 냉공기 이용이 사계성딸기 생산성에 미치는 영향)

  • Jeoung, Yun-Kyeoung;Park, Ju-Hyen;Ha, Tae Moon;Lee, Young-Suk;Seo, Myeong-Hoon;Kim, In-Chul
    • Journal of Bio-Environment Control
    • /
    • v.28 no.1
    • /
    • pp.28-37
    • /
    • 2019
  • We designed a system that can automatically collect, convey, and control cool air of $15^{\circ}C-20^{\circ}C$ containing carbon dioxide from a mushroom cultivation house to a strawberry plastic house. We recorded the temperature at various positions from July to August 2017. The average temperature of the green house during day and at night was maintained at $33^{\circ}C$ and $26^{\circ}C$, respectively. In the moveable three-tier cylindrical bed, the average temperature around root was maintained at $26^{\circ}C$ and $21^{\circ}C$ during day and at night, respectively. On the high-bench in the green house, the temperature was maintained at $32^{\circ}C$ and $30^{\circ}C$ during day and at night, respectively. The carbon dioxide concentration was maintained around 800-1,600 ppm in the mushroom cultivation system and 400-800 ppm in the strawberry plastic house. The growth characteristics of the strawberry treated with moveable three-tier cylindrical bed were significantly different from those of the untreated high-bench bed. In addition, during the summer season, moveable three-tier cylindrical bed showed more tendency to increase in normal fruit number (NFN) and to decrease in defective fruit number (DFN) compare to the high-bench bed. Therefore, the moveable three-tier cylindrical bed showed a tendency to be more than 2 times higher yields than that of the high-bench bed. It was confirmed that ever-bearing strawberry cultivars could be cultivated in green house due to the cool air supply from the mushroom cultivation system in the summer season.

Analysis on the Effect of the Crown Heating System and Warm Nutrient Supply on Energy Usage in Greenhouse, Strawberry Growth and Production (관부 난방시스템과 온수 양액 공급이 온실 에너지 사용량, 딸기 생육 및 생산성에 미치는 영향 분석)

  • Lee, Taeseok;Kim, Jingu;Park, Seokho;Lee, Jaehan;Moon, Jongpil
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.271-277
    • /
    • 2021
  • In this study, experiments of local heating on crown and supplying warm nutrient for energy saving and improving growth of 'Seolhyang' strawberry were conducted. The temperature of inside and crown in greenhouses which were control (space heating 8℃) and test (space heating 5℃+crown heating) was measured. In the control greenhouse, the average of temperature and humidity in December was 7.1℃, 87.2%, respectively. In the test greenhouse, the average of temperature and humidity in December was 5.7℃, 88.7%. The temperature of crown and inside the bed were 7.9℃, 10.8℃ in control, 9.3℃, 12.7℃ in test. During the test period, the total 16,847×103 kcal of energy was consumed in control greenhouse including space heating. In test greenhouse including space heating, crown heating and warm water supplying, total 9,475.7×103 kcal of energy was consumed. So, energy consumption in test was 43.8% less than in the control. The total yields of strawberry during test period were 412.7g/plant for test greenhouse and 393.3g/plant for control greenhouse respectively.

Hydrogen Peroxide Gas Generator with Dual Catalytic Bed for Non-preheating Start-up (비예열 시동특성을 갖는 이원 촉매 베드 과산화수소 가스발생기)

  • Lim, Ha-Young;An, Sung-Yong;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.163-167
    • /
    • 2007
  • Silver is widely used for catalytic decomposition of hydrogen peroxide, but start-up at room temperature is difficult and cannot withstand at high temperature. In this paper, to overcome these short-comings, a dual catalytic bed which consists of a vaporizer catalyst and a high temperature catalyst was studied. Platinum was selected as the vaporizer catalyst and perovskite type catalyst was selected for the high temperature catalyst. Preliminary test demonstrated start-up capability with non-preheating at room temperature and good thermal stability at high temperature.

  • PDF