• Title/Summary/Keyword: 범주분석

Search Result 2,308, Processing Time 0.03 seconds

Estimation of Occurrence Probability of Socioeconomic Damage Caused by Meteorological Drought Using Categorical Data Analysis (범주형 자료 분석을 활용한 사회경제적 가뭄 피해 발생확률 산정 : 충청북도의 적용사례를 중심으로)

  • Yu, Ji Soo;Yoo, Jiyoung;Kim, Min-ji;Kim, Tae-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.348-348
    • /
    • 2021
  • 가뭄 연구의 궁극적 목표는 가뭄 발생의 메커니즘에 대한 이해를 높이고, 예측기술을 향상시켜 선제적 대응이 가능하도록 하는 것이다. 일반적으로 가뭄분석에 활용되는 가뭄지표는 연속형 변수로 간주하여 확률모형을 구축하지만, 가뭄상태와 가뭄피해 자료는 순서형 및 이산형 변수이므로 범주형 자료 분석 기법을 적용하는 것이 더 적절하다. 따라서 본 연구에서는 기상학적 가뭄과 피해발생 사이의 관계를 규명하기 위해 범주형 자료 분석 방법 중 로그선형(log-linear) 모형과 로지스틱(logistic) 회귀모형을 활용하였다. 가뭄피해 예측을 위한 가뭄 피해 정보를 수집하는 것은 매우 어려운 일이다. 가뭄의 영향으로 인해 발생할 수 있는 피해의 종류가 다양하며, 여러 분야의 이해관계자가 받아들이는 가뭄의 피해 양상이 다르기 때문이다. 본 연구에서는 국가가뭄정보포털(drought.go.kr)에서 충청북도의 가뭄피해현황 자료를 수집하였다. 30년(1991~2020년)동안 238개 읍면동 중 34개 행정구역에서 총 272건의 가뭄피해가 발생한 것으로 확인되었다. 표준강수지수(SPI)를 이용하여 분석된 지역별 연평균 가뭄발생횟수는 약 8.44회이며, 가뭄이 가장 많이 발생한 해는 2001년(평균 가뭄발생 18.7회)이었다. 강수의 부족으로 인해 발생하는 기상학적 가뭄이 사회경제적 피해를 야기하는 수문학적 가뭄으로 전이되기까지 몇 주에서 몇 달까지 시간이 소요된다. 이러한 관계를 파악하기 위해 가뭄피해 발생 여부를 예측변수, 가뭄피해 발생 이전의 가뭄상태를 설명변수로 설정하여 기상학적 가뭄 발생에 따른 가뭄피해 발생 확률을 산정하였다. 그 결과 가뭄피해 발생 당시의 가뭄상태보다 그 이전에 연속된 가뭄상태가 있을 경우 가뭄피해 발생 확률이 약 2.5배 상승하는 것으로 나타났다.

  • PDF

Components for Picturebook Peritext Analysis (그림책 페리텍스트 분석을 위한 구성 요소)

  • A Reum Nam;Sang Lim Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.2
    • /
    • pp.181-188
    • /
    • 2023
  • Academic interest in the educational value of picturebooks for children and the narrative importance of peritexts have been increased. This study was conducted with the purpose of presenting the components for analyzing the picturebook peritext. To this end, the components of the peritext used in 11 previous studies that analyzed the peritext of picturebooks were comprehensively reviewed. Looking at the results of the study, the components used in previous studies were largely categorized into four categories, and according to the characteristics of the components within each category, they were classified into 'basic information', 'physical elements', 'positional elements', and 'content elements.' The first category, 'basic information,' includes the title, authors' name, publication information, award information, and dedication/acknowledgment, laudatory comment. The second category, 'physical elements,' includes the format, book binding, and quality of material. The third category, 'positional elements,' includes cover(front cover, back cover, spine), endpaper, title page, copyright page, dust jacket and belly band. The fourth category, 'content elements,' includes text, illustration, typography, layout and page shape. Through the results of this study, it is expected that research on the analysis and utilization of various picturebooks will be activated.

A Hypertext Categorization Model Exploiting Link and Incrementally Available Category Information (점진적으로 계산되는 분류정보와 링크정보를 이용한 하이퍼텍스트 문서 분류 모델)

  • Oh, Hyo-Jung;Lim, Jeong-Mook;Lee, Mann-Ho;Myaeng, Sung-Hyon
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10e
    • /
    • pp.89-96
    • /
    • 1999
  • 본 논문은 하이퍼텍스트가 갖는 중요한 특성인 링크 정보를 활용한 문서 분류 모델을 제안한다. 하이퍼링크는 문서간의 관계를 나타내는 유용한 정보로서 링크를 통해 연결된 두 문서는 내용적으로 관련이 있어 검색에 도움을 준다는 것은 이미 밝혀진바 있다. 본 논문에서는 이러한 과거 연구를 바탕으로 새로운 문서 분류 모델을 제안하는데, 이 모델의 주안점은 대상 문서와 링크로 연결된 이웃 문서의 내용 및 범주를 분석하여 대상 문서 벡터를 조정하고, 이를 근거로 문서의 범주를 결정한다. 이웃 문서에 포함된 용어를 반영함으로써 대상 문서의 내용을 확장 해석하고, 이웃 문서의 가용 분류 정보가 있는 경우 이를 참조함으로써 정확도 향상을 기한다. 이 모델은 이웃한 문서의 범주가 미리 할당되어 있지 않은 경우 용어 기반 분류 방법으로 가용 범주를 할당하고, 이렇게 할당된 분류 정보가 다시 새로운 문서의 범주를 결정할 때 사용됨으로써, 문서 집합 전체의 분류가 점진적으로 이루어지며 그 정확도를 더해 나가는 효과를 가져올 수 있다. 이러한 접근 방법은 일반 웹 환경에 적용할 수 있는데, 특히 하이퍼텍스트를 주제별로 분류하여 관리하는 검색 엔진의 경우 매일 쏟아져 나오는 새로운 문서와 기존 문서간의 링크를 활용함으로써 전체 시스템의 점진적인 분류에 매우 유용하다. 제안된 모델을 검증하기 위하여 Reuter-21578과 계몽사(ETRI-Kyemong) 자료를 대상으로 실험한 결과 18.5%의 성능 향상을 얻었다.

  • PDF

Re-conceptualization of data literacy reflecting the expanded data characteristics and context (확장된 데이터의 특성과 맥락을 반영한 데이터 리터러시의 재개념화)

  • Choi, Kyunghee;Cho, Dong-sung
    • Informatization Policy
    • /
    • v.30 no.3
    • /
    • pp.49-68
    • /
    • 2023
  • This study presented a framework for re-conceptualized data literacy that consists of three domains-knowledge, skills, and contexts- and elements that are emphasized by each domain. In addition to the existing concept of data literacy that mainly emphasized the skills to handle data, the context domain of data was considered including the elements of scope, time, and value orientation. Based on the re-conceptualized data literacy, it is expected to be usable as reference material in the development of curriculum and educational programs in the fields of informatization, manpower training, and administration.

A Development Of Customer Contextaware Management Service System Using NFC (NFC를 이용한 상황인식 고객관리 시스템 개발)

  • Oh, Dong-keun;Jung, Rae-jin;Han, Tae-won;Lee, Gang-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.195-197
    • /
    • 2012
  • 최근 고객관리 서비스는 사용자의 환경 및 특성까지 분석하여 개인에게 가장 적합한 서비스를 제공하는 형태로 변화하고 있다. 하지만 기존 고객관리시스템은 회원 가입 시 작성하는 정보 이외에 추가적으로 고객에 관한 정보를 얻기 위한 방법이 한정적이다. 이러한 기존의 고객관리 시스템은 고객의 성향에 따른 다양한 형태의 서비스를 제공하지 못하고 있다. 본 연구에서는 무선 통신 방법인 NFC(Near Field Communication)를 이용하여 고객의 성향을 신속하게 파악하며 분석할 수 있는 고객관리 시스템을 개발 제안한다. 제안된 시스템의 특징은 데이터의 처리 및 전송 경로가 사용자정보를 직접 서버로 전송하게 되며, 정보를 관리 서버에서 범주별로 분류하여 속성 단위로 가중치를 적용하여 분해하는 기능을 제공한다. 개발된 서버에서는 범주별로 규정되어 있는 속성정보에 대해 가중치와 저장된 사용자 정보를 제공된 알고리즘에 따라 상황인식기반으로 내용을 분석하게 되고, 분석된 사용자 정보들의 결과 값이 가장 높은 값을 가진 범주를 사용자의 특성으로 제공한다. 본 시스템으로부터 추출된 예측된 값은 사용정보를 수신할 때마다 갱신이 가능함으로 개발된 시스템은 사용자의 동향을 이용한 서비스를 온라인으로 제공할 수 있게 된다.

  • PDF

Korean Emotion Vocabulary: Extraction and Categorization of Feeling Words (한국어 감정표현단어의 추출과 범주화)

  • Sohn, Sun-Ju;Park, Mi-Sook;Park, Ji-Eun;Sohn, Jin-Hun
    • Science of Emotion and Sensibility
    • /
    • v.15 no.1
    • /
    • pp.105-120
    • /
    • 2012
  • This study aimed to develop a Korean emotion vocabulary list that functions as an important tool in understanding human feelings. In doing so, the focus was on the careful extraction of most widely used feeling words, as well as categorization into groups of emotion(s) in relation to its meaning when used in real life. A total of 12 professionals (including Korean major graduate students) partook in the study. Using the Korean 'word frequency list' developed by Yonsei University and through various sorting processes, the study condensed the original 64,666 emotion words into a finalized 504 words. In the next step, a total of 80 social work students evaluated and classified each word for its meaning and into any of the following categories that seem most appropriate for inclusion: 'happiness', 'sadness', 'fear', 'anger', 'disgust', 'surprise', 'interest', 'boredom', 'pain', 'neutral', and 'other'. Findings showed that, of the 504 feeling words, 426 words expressed a single emotion, whereas 72 words reflected two emotions (i.e., same word indicating two distinct emotions), and 6 words showing three emotions. Of the 426 words that represent a single emotion, 'sadness' was predominant, followed by 'anger' and 'happiness'. Amongst 72 words that showed two emotions were mostly a combination of 'anger' and 'disgust', followed by 'sadness' and 'fear', and 'happiness' and 'interest'. The significance of the study is on the development of a most adaptive list of Korean feeling words that can be meticulously combined with other emotion signals such as facial expression in optimizing emotion recognition research, particularly in the Human-Computer Interface (HCI) area. The identification of feeling words that connote more than one emotion is also noteworthy.

  • PDF

The effect of semantic categorization of episodic memory on encoding of subordinate details: An fMRI study (일화 기억의 의미적 범주화가 세부 기억의 부호화에 미치는 영향에 대한 자기공명영상 분석 연구)

  • Yi, Darren Sehjung;Han, Sanghoon
    • Korean Journal of Cognitive Science
    • /
    • v.28 no.4
    • /
    • pp.193-221
    • /
    • 2017
  • Grouping episodes into semantically related categories is necessary for better mnemonic structure. However, the effect of grouping on memory of subordinate details was not clearly understood. In an fMRI study, we tested whether attending superordinate during semantic association disrupts or enhances subordinate episodic details. In each cycle of the experiment, five cue words were presented sequentially with two related detail words placed underneath for each cue. Participants were asked whether they could imagine a category that includes the previously shown cue words in each cycle, and their confidence on retrieval was rated. Participants were asked to perform cued recall tests on presented detail words after the session. Behavioral data showed that reaction times for categorization tasks decreased and confidence levels increased in the third trial of each cycle, thus this trial was considered to be an important insight where a semantic category was believed to be successfully established. Critically, the accuracy of recalling detail words presented immediately prior to third trials was lower than those of followed trials, indicating that subordinate details were disrupted during categorization. General linear model analysis of the trial immediately prior to the completion of categorization, specifically the second trial, revealed significant activation in the temporal gyrus and inferior frontal gyrus, areas of semantic memory networks. Representative Similarity Analysis revealed that the activation patterns of the third trials were more consistent than those of the second trials in the temporal gyrus, inferior frontal gyrus, and hippocampus. Our research demonstrates that semantic grouping can cause memories of subordinate details to fade, suggesting that semantic retrieval during categorization affects the quality of related episodic memory.

Analysis of the linkage between the three categories of content system according to the 2022 revised mathematics curriculum and the lesson titles of mathematics textbooks for the first and second-grade elementary school (2022 개정 수학과 교육과정에 따른 내용 체계의 세 범주와 초등학교 1~2학년 수학 교과서 차시명의 연계성 분석)

  • Kim, Sung Joon;Kim, Eun kyung;Kwon, Mi sun
    • Communications of Mathematical Education
    • /
    • v.38 no.2
    • /
    • pp.167-186
    • /
    • 2024
  • Since the 5th mathematics curriculum, the goals of mathematics education have been presented in three categories: cognitive, process, and affective goals. In the 2022 revised mathematics curriculum, the content system was also presented as knowledge-understanding, process-skill, and value-attitude. Therefore, in order to present lesson goals to students, it is necessary to present all three aspects that are the goals of mathematics education. Currently, the lesson titles presented in mathematics textbooks are directly linked to lesson goals and are the first source of information for students during class. Accordingly, this study analyzed how the three categories of lesson titles and content system presented in the 2015 revised 1st and 2nd grade mathematics textbook are connected. As a result, most lesson titles presented two of the three categories, but the reflected elements showed a tendency to focus on the categories of knowledge-understanding and process-skill. Some cases of lesson titles reflected content elements of the value-attitude category, but this showed significant differences depending on the mathematics content area. Considering the goals of mathematics lessons, it will be necessary to look at ways to present lesson titles that reflect the content elements of the value-attitude categories and also explore ways to present them in a balanced way. In particular, considering the fact that students can accurately understand the goals of the knowledge-understanding categories even without presenting them, descriptions that specifically reflect the content elements of the process-skill and value-attitude categories seem necessary. Through this, we attempted to suggest the method of presenting the lesson titles needed when developing the 2022 revised mathematics textbook and help present effective lesson goals using this.

Permutation p-values for specific-category kappa measure of agreement (특정 범주에 대한 평가자간 카파 일치도의 퍼뮤테이션 p값)

  • Um, Yonghwan
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.4
    • /
    • pp.899-910
    • /
    • 2016
  • Asymptotic tests are often not suitable for the analysis of sparse ordered contingency tables as asymptotic p-values may either overestimate or underestimate the true pvalues. In this pater, we describe permutation procedures in which we compute exact or resampling p-values for a weighted specific-category agreement in ordered $k{\times}k$ contingency tables. We use the weighted specific-category kappa proposed by $Kv{\dot{a}}lseth$ to measure the extent to which two independent raters agree on the specific categories. We carried out comparison studies between exact p-values, resampling p-values and asymptotic p-values using $3{\times}3$ contingency data (real and artificial data sets) and $4{\times}4$ artificial contingency data.

The Experience of Mixed Lectures of Nursing Students (간호대학생의 혼합 수업 경험)

  • Seo, Myoung Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.129-137
    • /
    • 2021
  • This study is a qualitative study conducted using focus group interviews to examine the mixed offline and online education experience of nursing students in the context of Covid-19. The subjects of this study included 7 students enrolled in the Department of Nursing at J City V University, and focus group interviews were conducted with sufficient explanation and written consent for the study. The contents of the interviews were recorded, and the interview contents were directly transcribed directly after the interview. Research results were derived through content analysis. As a result of the study, 5 domains, 10 categories, and 24 subcategories were derived from the experiences of nursing college students on mixed lectures. The 5 domains included 'mixed lectures,' 'tasks,' 'tests,' 'motivation,' and 'improvement.' The contents of each domain derived from this research result are expected to be used as basic data in the design of the on/offline mixed lectures in the future.