• 제목/요약/키워드: 범주가 할당되지 않은 문서 집합

검색결과 2건 처리시간 0.016초

오류 학습 문서 제거를 통한 문서 범주화 기법의 성능 향상 (A Text Categorization Method Improved by Removing Noisy Training Documents)

  • 한형동;고영중;서정연
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권9호
    • /
    • pp.912-919
    • /
    • 2005
  • 문서 범주화에서 이진 분류를 다중 분류에 적용할 때 일반적으로 '한 범주에 적합-다른 모든 범주에서는 부적합(One-Against-All) 판정 방법'을 사용한다. 하지만, 이러한 '한 범주에 적합-다른 모든 범주에서는 부적합 판정 방법'은 한 가지 문제점을 가지는데, 적합(positive) 집합의 문서들은 사람이 직접범주를 할당한 것이지만 부적합(negative) 집합의 문서들은 사람이 직접 범주를 할당한 것이 아니기 때문에 오류 문서들이 많이 포함될 수 있다는 것이다. 본 논문에서는 이러한 문제점을 해결하기 위해서 슬라이딩 원도우(sliding window) 기법과 EM 알고리즘을 이진 분류 기반의 문서 범주화에 적용할 것을 제안한다. 제안된 기법은 먼저 슬라이딩 윈도우 기법을 사용하여 오류 문서들을 추출하고 이들을 EM알고리즘을 사용해서 다시 범주를 할당함으로써 이진 분류 기반의 문서 범주화 기법의 성능을 향상시킨다.

점진적으로 계산되는 분류정보와 링크정보를 이용한 하이퍼텍스트 문서 분류 모델 (A Hypertext Categorization Model Exploiting Link and Incrementally Available Category Information)

  • 오효정;임정묵;이만호;맹성현
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1999년도 제11회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.89-96
    • /
    • 1999
  • 본 논문은 하이퍼텍스트가 갖는 중요한 특성인 링크 정보를 활용한 문서 분류 모델을 제안한다. 하이퍼링크는 문서간의 관계를 나타내는 유용한 정보로서 링크를 통해 연결된 두 문서는 내용적으로 관련이 있어 검색에 도움을 준다는 것은 이미 밝혀진바 있다. 본 논문에서는 이러한 과거 연구를 바탕으로 새로운 문서 분류 모델을 제안하는데, 이 모델의 주안점은 대상 문서와 링크로 연결된 이웃 문서의 내용 및 범주를 분석하여 대상 문서 벡터를 조정하고, 이를 근거로 문서의 범주를 결정한다. 이웃 문서에 포함된 용어를 반영함으로써 대상 문서의 내용을 확장 해석하고, 이웃 문서의 가용 분류 정보가 있는 경우 이를 참조함으로써 정확도 향상을 기한다. 이 모델은 이웃한 문서의 범주가 미리 할당되어 있지 않은 경우 용어 기반 분류 방법으로 가용 범주를 할당하고, 이렇게 할당된 분류 정보가 다시 새로운 문서의 범주를 결정할 때 사용됨으로써, 문서 집합 전체의 분류가 점진적으로 이루어지며 그 정확도를 더해 나가는 효과를 가져올 수 있다. 이러한 접근 방법은 일반 웹 환경에 적용할 수 있는데, 특히 하이퍼텍스트를 주제별로 분류하여 관리하는 검색 엔진의 경우 매일 쏟아져 나오는 새로운 문서와 기존 문서간의 링크를 활용함으로써 전체 시스템의 점진적인 분류에 매우 유용하다. 제안된 모델을 검증하기 위하여 Reuter-21578과 계몽사(ETRI-Kyemong) 자료를 대상으로 실험한 결과 18.5%의 성능 향상을 얻었다.

  • PDF