The purpose of this study is to derive an optimal regression model for occurrences of major crimes on a security company's stock price through identifying precedence of the occurrences of major crimes on the security company's stock price, relationship between the occurrences of major crimes and the security company's stock price. Followings are the results of this study. First, the occurrences of murder crime, robbery crime, rape crime, theft crime move along the security company's monthly stock price simultaneously, and the occurrence of violence crime precedes 6 months to the security company's monthly stock price depending on the results of cross-correlation analysis of precedence of occurrences of major crimes, such as murder crime, robbery crime, rape crime, theft crime, violence crime on the security company's monthly stock price. Second, the explanation of the occurrences of robbery crime, rape crime, theft crime on the security company's monthly stock price is 61.7%($R^2$ = .617) excluding murder crime, violence crime depending on the results of multiple regression analysis(stepwise method) by putting the occurrences of major crimes, such as murder crime, robbery crime, rape crime, theft crime, violence crime into the security company's monthly stock price.
Journal of the Korea Society of Computer and Information
/
v.17
no.3
/
pp.95-103
/
2012
Modern society is experiencing a variety of crimes, and to prevent crime is being studied. Existing studies related to the crime of crimes that occur on spatial analysis and geographic information, or to analyze the type of criminal offense of studies have been conducted, However the existing studies of the geographical and psychological crime that occurs throughout the study area and by analyzing the motives for the crime prevention research is the most. In this paper, we introduce Markov processor model for predicting the crime is present. Of several crimes, murder, government official crimes, the incidence of violent crime has occurred over time by using the predicted incidence of crime. Presented in this paper, predictive modeling is used in a crime occurred in the average duration of the overall average number of crimes that occurred in the one-year average, which recently labeled as the average prediction was compared to if you can increase the likelihood, recent average to apply to increase the probability of the prediction that crime have been investigated.
Journal of the Korea Society of Computer and Information
/
v.17
no.4
/
pp.163-172
/
2012
Modern society, various great strength crimes are producing. After all crimes happen, it is most important that prevent crime beforehand than that cope. So, many research studied to prevent various crime. However, existing method of studies are to analyze and prevent by society and psychological factors. Therefore we wishes to achieve research to forecast crime by time using Markov chain method. We embody modelling for crime occurrence estimate by crime type time using crime occurrence number of item data that is collected about 5 great strength offender strength, murder, rape, moderation, violence. And examined propriety of crime occurrence estimate modelling by time that propose in treatise that compare crime occurrence type crime occurrence estimate price and actuality occurrence value. Our proposed crime occurrence estimate techniques studied to apply maximum value by critcal value about great strength crime such as strength, murder, rape etc. actually, and heighten crime occurrence estimate probability by using way to apply mean value about remainder crime in this paper. So, we wish to more study about wide crime case and as the crime occurrence estimate rate and actuality value by time are different in crime type hereafter applied examples investigating.
In modern society, crime is one of the major social problems. Crime has a great impact not only on victims but also on those around them. It is important to predict crimes before they occur and to prevent crime. Various studies have been conducted to predict crime. One of the most important factors in predicting crime is frequency of crime occurrence. The frequency of crime is widely used as basic data for predicting crime. However, the frequency of crime occurrence is announced about 2 years after the statistical processing period. In this paper, we propose a frequency analysis of crime - related key words retrieved from the web as a way to indirectly grasp the frequency of crime occurrence. The relationship between the number of frequency of crime occurrence and frequency of actual crime occurrence was analyzed by correlation coefficient.
KIPS Transactions on Computer and Communication Systems
/
v.5
no.9
/
pp.229-236
/
2016
In the past, crime prediction methods utilized previous records to accurately predict crime occurrences. Yet these crime prediction models had difficulty in updating immense data. To enhance the crime prediction methods, some approaches used social network service (SNS) data in crime prediction studies, but the relationship between SNS data and crime records has not been studied thoroughly. Hence, in this paper, we analyze the relationship between SNS data and criminal occurrences in the perspective of crime prediction. Using Latent Dirichlet Allocation (LDA), we extract tweets that included any words regarding criminal occurrences and analyze the changes in tweet frequency according to the crime records. We then calculate the number of tweets including crime related words and investigate accordingly depending on crime occurrences. Our experimental results demonstrate that there is a difference in crime related tweet occurrences when criminal activity occurs. Moreover, our results show that SNS data analysis will be helpful in crime prediction model as there are certain patterns in tweet occurrences before and after the crime.
Journal of the Korea Society of Computer and Information
/
v.12
no.5
/
pp.235-241
/
2007
AThis research is rather on the crime occurrence of target area's space scope than on the approach to the cause of specific area's crime occurrence from the perspective of the environmental criminology emphasizing the crime prevention. By observing the composition of crime distribution, it is intended to search the strategies of crime prevention actually corresponded to the crime problems. For this, after segmenting the city into six sectors, targeting city crimes in Gwangju metropolitan city, in 2004, the basic materials about the crime frequency are analyzed through dividing the types on the base of the present state of crime occurrence, the types of crime, the locations of crime occurrence, the purposes of buildings, the types of intruders, the forms of intrusions. As a result of research. it is suggested that the activation method of community police activities is necessary for the prevention of community crime prevention.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.33
no.4
/
pp.221-229
/
2015
The urban crimes that threat individual's safety are parts of the serious social problems. However. the information of crime in Korea has only been provided by forms of hot spots around place of crime, or forms of crime statistics without positional information. Those could not provide enough information to users in identifying the vulnerable areas for substantive crimes. Therefore, this study suggested a methodology of extraction in criminal vulnerable areas by using the spatial information, the statistical information and the public sector information. The crime vulnerable areas were extracted through the grid-based spatial analysis and the overlapping analysis from each of the information. In fact, the extracted areas were able to provide detailed vulnerability information than the traditional hot spot-based crime information. Following the study, the extracted results in crime vulnerable areas have displayed highly coincide with Korea safety map, provided by national disaster management institute, which regards to be able to provide crime risk rating in terms of administrative business in future.
This study started with the need to have a basic understanding of the crimes related to security guard in Korea. For this purpose, it attempted to analyze the crimes related to security guard occurring in Korea for the years, the cause for those crimes to occur, and the basic cause for those crimes such as criminals' educational level, age, occupation and so forth investigate how those crimes occurred. And ultimately it was intended to provide referential materials for perfect security guard from the stage of its planning to the stage of implementation and termination by analyzing how the machinery of law treated those criminals. This study aimed to help security guards to perform their role by investigating the cause and disposition of crimes related to security guard occurring for the years in order to cope with the emergency situation frequently occurring in the job of security guard. To attain the goal of study, this study attempted to do the following tasks: First, to analyze existing crimes and investigate the crimes related to security guard in order to investigate how the criminal act occurred in relation to the crime related to security guard, numerous kinds of crimes. Second, to investigate in what case the criminal act occurred by analyzing the criminal environment, the yearly, monthly and weekly frequency of those crimes and the like in relation to this criminal act. Third, to grope the alternative to cope effectively with all sorts of dangerous situations on the spot of security guard by analyzing the crimes related to security guard and investigating the effective scheme for coping with it.
The purpose of this study focused on the distribution of crimes in Cheongju City. This study emphasized the characteristics of place and spatial pattern of crime in Central Business District(CBD). The crime core areas were delineated and explained through land-use based on fieldwork and GIS analysis For this aim. the police crime data of Cheongju Dongbu(east). Seobu(west) for 1998 were collected In which 3.909 indictable or similar offenses were reported. In this study, Included climes are murder. rape, robbery. arson, theft, burglary, assault and vandalism. Because theme crimes are related with site-specific crime. As a result. land-use patterns are often related to specific type of offenses. The climes in Cheongju City were concentrated in the CBD Most crimes were assaults and thefts Crime areas can be classified by the age of the offender Around Chungang and Pungmul Market in the CBD. the offender's ages were 30-50 dominantly Assaults and thefts were concentrated in Songan-gil(street). which is a place teen-ages and youngsters meet frequently The result of the buffering analysis with roads, explained 40% of crime within a 30m buffer area( including both sides) of a principal road The rest of the climes mainly occurred in the vicinity of narrow streets and alleys.
Park, Ji Ho;Cha, Gyeong Hyeon;Kim, Kyung Ho;Lee, Dong Chang;Son, Ki Jun;Kim, Jin Young
Journal of Satellite, Information and Communications
/
v.10
no.2
/
pp.40-45
/
2015
In this paper, we proposed and implemented a crime prediction algorithm based upon crime influential factors. To collect the crime-related big data, we used a data which had been collected and was published in the supreme prosecutors' office. The algorithm analyzed various crime patterns in Seoul from 2011 to 2013 using the spatial statistics analysis. Also, for the crime prediction algorithm, we adopted a Bayesian network. The Bayesian network consist of various spatial, populational and social characteristics. In addition, for the more precise prediction, we also considered date, time, and weather factors. As the result of the proposed algorithm, we could figure out the different crime patterns in Seoul, and confirmed the prediction accuracy of the proposed algorithm.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.