Proceedings of the Korea Information Processing Society Conference
/
2001.04a
/
pp.65-68
/
2001
이 논문에서는 고차원 색인 구조인 CIR-트리를 위한 효율적인 벌크로딩 알고리즘을 설계하고 구현한다. 벌크로딩 기법은 대량의 고차원 데이터가 색인 구성 시 함께 주어진는 경우 색인의 구성을 빠르게 하고 구축한 색인의 검색 성능을 향상시킨다. CIR-트리는 변별력 있는 일부 차원만 이용해서 비 단말노드의 엔트리를 구성하기 때문에 엔트리 크기가 일정하지 않다는 특징이 있으며 이는 비단말 노드의 팬아웃을 높이고 탐색 성능을 향상시키는 효과가 있다. 기존에 다차원 및 고차원 색인구조를 위한 벌크로딩 기법이 제안되었지만 이러한 CIR-트리의 특징을 제대로 살릴 수 있는 방법은 없다. 따라서 이 논문에서는 기존의 벌크로딩 알고리즘을 개선하면서 CIR-트리의 특징을 효과적으로 색인 구성에 반영할 수 있는 알고리즘을 제안한다. 또한 이를 BADA-III의 하부 저장 시스템인 MiDAS-III에서 구현하고 다양한 실험을 통해 그 성능을 입증한다.
In this paper, we design and implement an efficient bulk-loading algorithm for CIR-Tree. Bulk-loading techniques increase node utilization, improve query performance and reduce index construction time. The CIR-tree has variable size of internal node entries since it only maintains minimal dimensions to decriminate child nodes. This property increases fan-out of internal nodes and improves search performance. Even though several bulk-loading algorithms for multi/high-dimensional index structures have been proposed, we cannot apple them to CIR-tree because of the variable size of internal node entries. In this paper, we propose an efficient bulk- loading algorithm for CIR-tree that improves the existing bulk-loading algorithm and accomodates the property of CIR-tree. We also implement it on a storage system MiDAS-III and show superiority of our algorithm through various experiments.
In spatial databases, R-tree is one of the most widely used indexing structures and many variants have been proposed for its performance improvement. Among these variants, Hilbert R-tree is a representative method using Hilbert curve to process large amounts of data without high cost split techniques to construct the R-tree. This Hilbert R-tree, however, is hardly applicable to large-scale applications in practice mainly due to high pre-processing costs and slow bulk-load time. To overcome the limitations of Hilbert R-tree, we propose a novel approach for parallelizing Hilbert mapping and thus accelerating bulk-loading of Hilbert R-tree on GPU memory. Hilbert R-tree based on GPU improves bulk-loading performance by applying the inversed-cell method and exploiting parallelism for packing the R-tree structure. Our experimental results show that the proposed scheme is up to 45 times faster compared to the traditional CPU-based bulk-loading schemes.
The Transactions of the Korea Information Processing Society
/
v.7
no.8
/
pp.2327-2340
/
2000
Existing bulk loading algorithms for multi-dimensional index structures suffer from satisfying both index construction time and retrieval perfonnancc. In this paper, we propose an efficient bulk loading algorithm to construct high dimensional index structures for large data set that overcomes the problem. Although several bulk loading algorithms have been proposed for this purpose, none of them improve both constnlCtion time and search performance. To improve the construction time, we don't sort whole data set and use bisectiou algorithm that divides the whole data set or a subset into two partitions according to the specific pivot value. Also, we improve the search performance by selecting split positions according to the distribution properties of the data set. We show that the proposed algorithm is superior to existing algorithms in terms of construction time and search perfomlance through various experiments.
Proceedings of the Korean Information Science Society Conference
/
2011.06c
/
pp.37-40
/
2011
계층적 색인 구조는 대용량의 다차원 데이터에 대한 범위질의를 가장 효율적으로 처리하는 색인 구조이다. 계층적 색인 구조에서 범위질의의 속도를 향상시키기 위해서 색인 구조의 구성 시 발생하는 인접노드간의 겹치는 영역을 줄이는 기법들과 다량의 데이터를 한 번에 읽어 상향식 방식으로 색인 구조의 공간 활용도를 증가시키는 벌크 로딩 기법들이 제안되었다. 하지만 CPU기반에서 개별의 노드들을 순차적으로 질의처리 하는 계층적 색인 구조는 공간 활용도의 증가와 노드 간의 중첩 영역을 줄이는 것만으로는 질의 처리 성능 향상에 한계가 있다. 따라서 본 논문에서는 기존의 CPU기반 계층적 색인 구조 중의 대표적인 예인 R-tree의 저장 구조를 GPU 메모리에 적합하도록 변경을 하였다. 또한 기존 CPU기반 계층적 색인 구조의 순차적인 노드 검색을 GPU를 이용해 병렬적으로 노드를 검사하여 성능을 향상시켰다. 이와 같은 방식으로 질의 영역의 크기에 따라서 성능 향상정도가 다르지만 최대 100배 이상의 성능을 향상시켰다.
Proceedings of the Korean Information Science Society Conference
/
2003.10b
/
pp.223-225
/
2003
분산 데이터베이스 시스템 환경에서는 특정 노드로 집중되는 부하의 분산이나 가용성 및 안정성 제공을 위해 데이터 분할기법 (fragmentation)과 복제기법(replication)을 사용한다. 이때 전송된 데이터에 대한 기존의 색인 재활용 기법과 벌크 로딩(bulk loading) 기법은 효율적인 색인 구성을 위해 논리적인 페이지 포인터를 물리적 주소로 변환하는 물리적 사상구조를 필요로 하거나, 색인 구성시간과 검색성능 모두를 향상시키지 못하는 문제점을 지닌다. 본 논문에서는 이와 같은 문제점을 해결하기 위해 색인 전송기법을 제안한다. 본 기법은 색인 재활용을 위해 물리적 사상구조를 추가로 유지하거나, 검색 성능을 향상시키기 위해 전체 데이터 집합을 정렬하는 것이 아니라, 데이터가 전송될 사이트에 색인구조물 저장하기 위한 물리적 공간은 예약하고 예약된 공간에 색인구조를 전송, 기록함으로써 색인 구성비용을 줄이게 된다. 또한 예약된 공간을 연속적인 페이지구조로 구성함으로써 색인 구성 시 자식노드에 대한 위치정보를 예상하여 부모노드가 지니는 자식노드에 대한 위치정보 기록 비용을 줄일 수 있다.
Park Jae-Kwan;An Kyung-Hwan;Jung Ji-Won;Hong Bong-Hee
Journal of KIISE:Databases
/
v.33
no.3
/
pp.271-281
/
2006
Recently the need for Location-Based Service (LBS) has increased due to the development and widespread use of the mobile devices (e.g., PDAs, cellular phones, labtop computers, GPS, and RFID etc). The core technology of LBS is a moving-objects database that stores and manages the positions of moving objects. To search for information quickly, the database needs to contain an index that supports both real-time position tracking and management of large numbers of updates. As a result, the index requires a structure operating in the main memory for real-time processing and requires a technique to migrate part of the index from the main memory to disk storage (or from disk storage to the main memory) to manage large volumes of data. To satisfy these requirements, this paper suggests a unified index scheme unifying the main memory and the disk as well as migration policies for migrating part of the index from the memory to the disk during a restriction in memory space. Migration policy determines a group of nodes, called the migration subtree, and migrates the group as a unit to reduce disk I/O. This method takes advantage of bulk operations and dynamic clustering. The unified index is created by applying various migration policies. This paper measures and compares the performance of the migration policies using experimental evaluation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.