• Title/Summary/Keyword: 뱀형상윤곽

Search Result 2, Processing Time 0.015 seconds

A ProstateSegmentationofTRUS ImageusingSupport VectorsandSnake-likeContour (서포트 벡터와 뱀형상 윤곽선을 이용한 TRUS 영상의 전립선 분할)

  • Park, Jae Heung;Se, Yeong Geon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.101-109
    • /
    • 2012
  • In many diagnostic and treatment procedures for prostate disease accurate detection of prostate boundaries in transrectal ultrasound(TRUS) images is required. This is a challenging and difficult task due to weak prostate boundaries, speckle noise and the short range of gray levels. In this paper a method for automatic prostate segmentation inTRUS images using support vectors and snake-like contour is presented. This method involves preprocessing, extracting Gabor feature, training, and prostate segmentation. Gabor filter bank for extracting the texture features has been implemented. A support vector machine(SVM) for training step has been used to get each feature of prostate and nonprostate. The boundary of prostate is extracted by the snake-like contour algorithm. The results showed that this new algorithm extracted the prostate boundary with less than 9.3% relative to boundary provided manually by experts.

Delineating the Prostate Boundary on TRUS Image Using Predicting the Texture Features and its Boundary Distribution (TRUS 영상에서 질감 특징 예측과 경계 분포를 이용한 전립선 경계 분할)

  • Park, Sunhwa;Kim, Hoyong;Seo, Yeong Geon
    • Journal of Digital Contents Society
    • /
    • v.17 no.6
    • /
    • pp.603-611
    • /
    • 2016
  • Generally, the doctors manually delineated the prostate boundary seeing the image by their eyes, but the manual method not only needed quite much time but also had different boundaries depending on doctors. To reduce the effort like them the automatic delineating methods are needed, but detecting the boundary is hard to do since there are lots of uncertain textures or speckle noises. There have been studied in SVM, SIFT, Gabor texture filter, snake-like contour, and average-shape model methods. Besides, there were lots of studies about 2 and 3 dimension images and CT and MRI. But no studies have been developed superior to human experts and they need additional studies. For this, this paper proposes a method that delineates the boundary predicting its texture features and its average distribution on the prostate image. As result, we got the similar boundary as the method of human experts.