• Title/Summary/Keyword: 밸브트레인

Search Result 41, Processing Time 0.019 seconds

Effect of Valve Train Layout on Cam/Tappet Wear Characteristics of End Pivot Rocker Arm Type OHC Valve Train (끝단 지지 로커암형 오버 헤드 밸브트레인의 캠/종동자 마모 특성에 미치는 밸브트레인 레이아웃의 영향)

  • 이종원;장재영;김도중
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.184-192
    • /
    • 2001
  • Cam/tappet wear is one of the critical concerns in valve train deign. Maximum contact stress and minimum oil film thickness between the cam and tappet are usually checked for the estimation of wear characteristics. If the two extreme cases arise simultaneously, there is a strong possibility of cam/tappet wear. In this paper, effects of valve train layout on the wear characteristics were studied. Especially for swinging arm type valve trains, initial geometric layout must be very carefully defined to avoid wear problems. The study was performed fur an end pivot type OHC valve train, which had severe wear problems. Analysis results show that some geometric parameter affect very sensitively on the wear characteristics. Experiments were also performed for the original and modified valve trains, which strongly support the analysis results.

  • PDF

A Study on the Dynamic Characteristics of Polydyne cam Valve Train (폴리다인 캠 밸브 트레인의 동적 특성에 관한 연구)

  • You, Hwan-Shin;Chun, Dong-Joon
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.3
    • /
    • pp.441-448
    • /
    • 2011
  • It is very important that establishing the valve train equations and representing the behavior of the valve train parts. To maintain the specific efficiency of running engine, the cam profile of valve train has more specific influence on the adequate behavior of the valve train than a valve clearance, heat-resistance and durability of parts. The polynomial cam, the multipol cam and polydyne cam profie are widely used to represent cam behaviour. In this study, using polydyne cam design profile equations which is more adequate for representing high speed engine, the geometrical modeling and mathmatical variable analysis are established to analysis the valve behaviour.

Kinematic Analysis of a Continuously Variable Valve Actuation Mechanism with Movable Second Cam Center (2차 캠 중심 이동형 연속가변밸브 구동기구의 기구학 해석)

  • Kim, Do-Joong;Kim, Yong-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.7-15
    • /
    • 2009
  • This paper introduces a new variable valve actuation mechanism with movable second cam center. Valve lift and open duration can be continuously varied according to engine speed and load conditions. A new method to analyze the kinematic relations between the first and second cam profiles and valve motion are also introduced. Because of rocker motion of the second cam, conventional motion conversion program could not be used in this problem. An example shows continuous variations of valve motion and adequate ramp incorporation throughout all valve lift modes. Valve acceleration profile at the high lift mode is similar to that of conventional valvetrains. Contact geometry analysis of the mechanism gives basic information on the load conditions between the components.

Production Process Development and Prototype Evaluation for Roller Tappet Housing of Valvetrain (밸브트레인용 롤러태핏 하우징의 제작 공정 개발 및 시제품 평가)

  • Gwak, Eun-Jo;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.223-229
    • /
    • 2016
  • In this study, a cold forging process was developed for the roller tappet housing of an engine valvetrain system. A tappet sample was manufactured and subjected to an endurance test. The material properties were obtained from a compression test, and forging analysis was carried out to design a forging process using a commercial program, Deform-3D. The forging process was set up based on the analysis results, and a die set and sample tappet housing were manufactured. To evaluate the sample, the dimensional accuracy, surface roughness, parallelism, and concentricity were measured and confirmed. To evaluate the actuation and durability, a special test rig was developed to simulate the valvetrain system of the engine. An actuation test was performed based on the idle speed of a general diesel engine, and an endurance test was done based on the maximum speed. The results show minor wear of 0.002 mm. The developed test rig will be used to evaluate the actuation and durability of other valvetrain parts.

Analysis of Valvetrain Dynamics of an Internal Combustion Engine with Elastic Deformation of the Components (부품의 탄성변형을 고려한 내연기관 밸브트레인 동역학 해석)

  • Lee, Ki-Su
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.63-71
    • /
    • 2009
  • The elastic effects of the valve train components are analyzed by using the finite element models of the rocker arm and valve. The whole equations of motion of the valvetrain of an internal combustion engine formulated by finite element techniques are solved by imposing the contact conditions with the augmented Lagrange multiplier method. The velocity and acceleration constraints as well as the displacement constraints are imposed on the contact points. The numerical simulations show that, even if the magnitude of the elastic deformation of the components is very small, it may have large effects on the valvetrain dynamics of a high-speed engine.

Cam Profile Design for Impulsive Noise Reduction of Automotive Engine Valve Train (자동차 엔진 밸브트레인의 타음감소를 위한 캠 형상 설계)

  • An, Ki-Yong;Kim, Do-Joong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.139-148
    • /
    • 2006
  • Valve train is one of the important noise sources in idling engines. Valve train noise comes mostly from two different impacts. One is the impact between cam and tappet at the beginning of the valve open period, which is an important source of impulsive noise of valve trains. The other is the impact between valve and valve seat at the closing of the valve open period. In case of mechanical lash adjusters, it is very difficult to control the initial impact. In this paper, we designed various types of cam profiles, especially in the opening ramp design, and investigated the effect of cam profiles on the magnitude of the initial impact. The effects that some cam design parameters have on the impulsive noise are also observed.

Analysis of Elastohydrodynamic Lubrication Film under Dynamic Loads in Engine Valve Train System with Multigrid Multilevel Method (멀티그리드 멀티레벨 기법을 이용한 엔진 밸브 트레인의 동하중 탄성 유체 윤활 유막 해석)

  • 장시열
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.151-159
    • /
    • 1998
  • 디젤 엔진의 푸쉬로드 타입의 밸브 트레인에서의 힘의 전달 과정을 기구학적 응용을 통하여 구하였다. 이러한 힘의 최종 전달 단계인 캠과 평판 종동물의 접촉에서의 작용하중과 상대 운동 속도를 계산하였고 접촉면에서의 유막 두께를 고체면의 탄성변형을 고려하여 계산하였다. 특히 탄성 유체 윤활의 해석을 하는데 있어서 안정성과 수렴성이 우수한 멀티그리드 멀티레벨 기법을 사용하였으며 동하중 상태를 고려하여 유막 두께를 계산하고 기존의 정상상태의 해석해와 비교하였다.

  • PDF

A Study on the Rotation of Tappet in Direct-Acting Type Valve Trains (직동식 밸브 트레인의 태핏 회전에 관한 연구)

  • 김병환;심현해;임윤철;윤정의
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.117-122
    • /
    • 1997
  • 밸브 트레인에서 국부 마멸을 줄이기 위한 태핏의 회전은 캠과 태핏의 접촉면에서 태핏속도의 변화를 가져오게 된다. 본 연구에서는 이러한 태핏의 회전속도를 캠/태핏 접촉면의 윤활 및 마찰 해석을 바탕으로 해석하고 이에 영향을 미치는 변수인 오프셋 거리, 엔진 회전속도 그리고 태핏과 실린더 헤드사이의 틈새에 대한 영향을 살펴보았다.

  • PDF

An Experimental Study on the Effect of Valve Train Design Parameters on the Diesel Engine Valve Rotation (디젤엔진의 밸브회전에 미치는 밸브트레인 설계변수들의 영향에 관한 실험적 연구)

  • Kim, Do-Joong;Jeong, Young-Jong;Lee, Jung-Hee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.1-8
    • /
    • 2004
  • In this paper we present the effects that valve train design parameters and operating conditions have on the valve rotation properties of a diesel engine. Rotation of intake and exhaust valves are very closely related to the long term durability of diesel engines. of the valves do not rotate even at a rated engine speed, it causes the uneven wear of the valve seat and valve head contact area, which eventually shortens the engine life. Because the rated speed of a diesel engine is relatively lower than that of a gasoline engine, the operating condition of a diesel engine produces tough environment for valve rotation. Therefore, the valve rotation is an important problem which should be solved in the early stage of engine development. In this study, we developed a new technique to measure the valve rotation and shaking motion simultaneously using three proximity sensors. Valve train rotating properties of a diesel engine were measured under various engine operating conditions.

Dynamic Analysis of Engine Valve Train with Flexible Multibody Model Considering Contact between Components (부품간의 접촉을 고려한 유연체모델을 이용한 엔진 밸브트레인의 동특성 해석)

  • Hwang, Won-Gul;Sung, Won-Suk;Ahn, Ki-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.125-132
    • /
    • 2011
  • The dynamic characteristics of valve train are responsible for the dynamic performances of engine. We derived the equation of motion for 6 degrees of freedom model of the valve train. Computer model is also developed with flexible multibody model considering contact between components. The simulation results with these two models are compared with experimental results. We investigated the effect of the two spring models, TSDA (Translational Spring Damper Actuator) element and flexible body model, on the valve behavior and spring force. It is found that the dynamic behavior of the two models are not very different at normal operational velocity of the engine. By modeling contact between cam and tappet, the stress distributions of the cam were found. Using stress distribution obtained, contact width and contact stresses of the cam surface were calculated with Hertz contact theory.