• Title/Summary/Keyword: 백악기 퇴적암

Search Result 109, Processing Time 0.018 seconds

Tectonics of the south Shetland Islands and Geology of king George Island: A Review (남쉐틀랜드군도의 지체구조 및 킹죠지섬의 지질)

  • 이민성;박병권
    • 한국해양학회지
    • /
    • v.25 no.2
    • /
    • pp.74-83
    • /
    • 1990
  • The similarity in Mesozoic geology between the Antarctic Peninsula and South America indicates the possibility that they had situated along the same tectonics line before the separation of southwestern Gondwanaland. The igneous activity around the Antarctic Peninsula, including the South Shetland islands, can be correlated with the South American Cordillera Orogeny due to the subduction of Farallon/Phoenix plate until late Mesozoic. However igneous activity in Tertiary correlates with the tectonics movement accompanying the formations of Drake passage and Scotian sea. The south Shetland islands form a Jurassic-Quaternary miasmatic island arc on the sialic basement of schist and deformed sedimentary rocks. Forming of the South Shetland Islands arc began during the latest Jurassic or earliest Cretaceous from the southwestern part of the archipelago. The igneous activity migrated northeasterly and continued in most areas until late Tertiary. The entire arc-forming period, between late Jurassic and late tertiary times, was characterized by emplacement and eruption of magmas of intermediate between island-arc tholeiite and calc-alkaline types. However, Quaternary volcanic rocks show strong alkaline affinities which corresponds to the switch from compressional to intra: plate tensional tectonics. The rocks of late Cretaceous to Tertiary, mainly found in King George Island, consist of lava of basalt to andesite and intercalated pyroclastic rocks. Some of the volcanic rocks, which ofter called quartz-pyrite lodes'are severely altered and include much content of calcite,silica and pyrite.The stratographic succession of King George Island can be divided into two formation:Fields formation and Hennequin formation.The Fildes formation crops out at the west side of Admiralty Bay n King George Island,while the Hennequin formation at the east side of the bay.These two formtions are thought to be formed contempiranceously.The Fildes formation consists of altered olivine-basalt and basaltic andestie, whereas the Hennequin formation consists of fine-grained hypersthene-augite-andesite.Both formations interclate pyroclastic rocks.

  • PDF

Movement History of Faults Considered from the Geometric and Kinematic Characteristics of Fracture System in Gilan-cheongsong Area, Gyeongsang Basin, Korea (경상분지 길안-청송 지역에서 단열계의 기하학적.운동학적 특성으로부터 고찰된 단층운동사)

  • Lee, Deok-Seon;Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.293-305
    • /
    • 2009
  • The Gilan-Cheongsong area, which is in contact with Yeongyang and Uiseong Blocks of Gyeongsang Basin, Korea, consists of Precambrian metamorphic rocks, Triassic Cheongsong granite, Cretaceous sedimentary rocks(Iljik, Hupyeongdong, Jeomgok Formations), and Cretaceous igneous rocks(andesite, quartz porphyry, felsite). In this area are developed faults trending in (W)NW, NNW, ENE, NS, (N)NE directions which are representative in the Gyeongsang Basin. We analyzed the geometric and kinematic characteristics of fracture systems to inquire into movement history and sense of these faults in this area. This study suggests that these faults were mainly strike-slip movement. The orientations of fracture sets show ENE, NNW, (W)NW, (N)NE, NS in descending order of frequency. Their prolongation presents (W)NW, NNW, ENE, (N)NE, NS in descending order of predominance, and also agrees with that of faults in this area. The development sequence and movement sense of fracture sets are summarized as follows; (1) (W)NW: dextral shearing $\rightarrow$ (2) (W)NW and NNW: conjugate shearing(the former: dextral, the latter: sinistral) $\rightarrow$ (3) NNW: dextral shearing $\rightarrow$ (4) (W)NW: sinistral shearing $\rightarrow$ (5) ENE: dextral shearing $\rightarrow$ (6) ENE and NS: conjugate shearing(the former: sinistral, the latter: dextral) $\rightarrow$ (7) (N)NE: sinistral shearing, and this result is closely associated with the development sequence and movement sense of faults developed in this area.

Palaeodepositional Environment of the Cretaceous Hampyeong Basin, Southwestern Korea (한반도 남서부 중생대 백악기 함평퇴적분지의 고퇴적환경연구)

  • You, Hoan-Su;Kenrick, Paul;Koh, Yeong-Koo;Yun, Seok-Tai;Kim, Joo-Yong;Kim, Hai-Gyoung;Chung, Chul-Hwan;Ryu, Sang-Ock
    • Journal of the Korean earth science society
    • /
    • v.21 no.6
    • /
    • pp.683-694
    • /
    • 2000
  • Abstrace: The palaeodepositional environment and age of the Cretaceous Hampyeong Basin (southwestern Korea) are reassessed based on new geochemical, lithological, sedimentological, and palaeobotanical data. Results indicate that the Hampyeong Basin was a tectonically active basin comprising predominantly fluvial and lacustrine sediments. Four distinctive facies types have been identified (acidic tuff, black shales/sandstones, red beds, intermediate tuff with tuffaceous conglomerate) and these reflect periods of significant environmental change within the basin and its neighbouring terrains. Volcanism driven by tectonic events provides a source for much of the sediment. The sedimentary sequences compare well with those in the neighbouring Haenam Basin. Sediments of volcanic origin are similar to those of the Neungju Formation of the Yuchon Group. The widespread occurrence of black shales is indicative of extended periods of deposition under anoxic conditions. Measurements of total organic carbon show that the values for the black shales (0.81% to 1.75%) are the average for petroleum source shales. Fossil plants occurred in the black shales and sandstones. The occurrence of platanoid leaves places these sediments in Oishi's angiosperm series, which is consistent with an Aptian/Albian or younger age.

  • PDF

A Survey Report on the Polymetallic Mineralization in the Oyon Mineralized District, Central Peru (페루 중부 오욘 다중금속 광화작용에 대한 조사보고)

  • Lee, Jaeho;Kim, Injoon;Nam, Hyeong-tae
    • Economic and Environmental Geology
    • /
    • v.50 no.1
    • /
    • pp.73-83
    • /
    • 2017
  • The surveyed mines are located in a polymetallic vein, replacement, and skarn mineral district in the central Andes of Peru. Iscaycruz, which includes underground and open pit mines that produce zinc and lead concentrates, was the largest mineral deposit of an important group of base metal deposits in the Andes of central Peru. The deposits are sub-vertical seams of polymetallic ores(Zn, Cu, and Pb). These seams are hosted by Jurassic and Cretaceous sedimentary rock formation. The intrusion of igneous rocks in these formations originated metallic deposits of metasomatic and skarn types. The Raura mine is composed of polymetallic deposit of veins and replacement orebodies. The main sedimentary unit in the area is Cretaceous Machay Limestone. The Raura depression contains several orebodies each with different mineralization: predominantly Pb-Zn bearing Catuvo orebody; Ag-rich galena-bearing Lake Ninacocha orebody; Cu-Ag bearing Esperanza and Restauradora orebody. Huaron is a hydrothermal polymetallic deposit of silver, lead, zinc, and copper mineralization hosted within structures likely related to the intrusion of monzonite dikes, principally located within the Huaron anticline. Mineralization is encountered in veins parallel to the main fault systems, in replacement bodies known as "mantos" associated with the calcareous sections of the conglomerates and other favourable stratigraphic horizons, and as dissemination in the monzonitic intrusions at vein intersections.

Petrology of the Cretaceous Volcanic Rocks in the Gyemyeong peak and Janggun peak area, Mt. Geumjeung, Busan (부산 금정산의 계명봉과 장군봉 일대 백악기 화산암류에 관한 암석학적 연구)

  • Kim, Hye-Sook;Kim, Jin-Seop;Moon, Ki-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.1-17
    • /
    • 2009
  • This article carried studies of the petrographical and petrochemical characteristics on the Cretaceous volcanic rocks in the area of Janggun peak and Gyemyeong peak which is located at the northeastern area of Mt. Geumjeong, Busan. The areas are composed of andesitic rock, sedimentary rock, rhyolitic rock, and intrusive hornblende, biotite granites, in ascending order. According to petrochemistry, the major elements show the calc-alkaline rock series ranged medium-K to high-K. With increasing $SiO_2$, $Al_{2}O_{3}$, $Fe_{2}O_{3}$, $TiO_2$ CaO, MgO MnO and $P_{2}O_{5}$ are decreased and $K_{2}O$ and $Na_{2}O$ are increased in the volcanic rocks. The trace element compositions show high LILE/HFSE ratios and negative anomaly of Nb, and REE patterns show enrichments in LREE and (-) anomaly values increase of Eu from the basaltic andesite to andesite facies, therefore the volcanic rocks have typical characteristics of continental margin arc calc-alkaline volcanic rocks, produced in the subduction environment. The volcanic rock show nearly the same patterns in spider and REE diagram. Fractional crystallization of the basaltic magma would have produced the calc-alkaline andesitic magma. And the rhyolitic magma seems to have been evolved from the basaltic andesitic magma with fractional crystallization of plagioclase, pyroxene, hornblende, biotite.

Depositional Processes of Pyroclastic Density Currents in Lacustrine Environments: An Example from the Cretaceous Jeonggaksan Formation in Danjang-myeon, Miryang City (호수 내 화쇄밀도류의 퇴적과정: 밀양시 단장면 일원 백악기 정각산층의 예)

  • Gihm, Yong Sik;Park, Seung-Ik
    • Economic and Environmental Geology
    • /
    • v.55 no.3
    • /
    • pp.295-307
    • /
    • 2022
  • We studied the Cretaceous Jeonggaksan Formation to determine depositional processes of pyroclastic density currents entering into the lacustrine environments. This formation is composed largely of sandstone-mudstone couplets and (tuffaceous) normally graded sandstones deposited in lacustrine environments, interbedded with two pyroclastic beds: welded massive lapilli tuff and normally graded lapilli tuff. The welded massive lapilli tuff (10 m thick) is composed of poorly sorted, structureless lapilli supported by a welded ash matrix. The normally graded lapilli tuff (4 m thick) is characterized by moderately to well sorted natures and multiple normally graded divisions in the lower part of the bed with internal boundaries. The contrasting depositional features between these lapilli tuff are suggestive of different physical characteristics and depositional processes of pyroclastic density currents in the lake. Overall poorly sorted and massive natures of the thick, welded massive lapilli tuff are interpreted to have been formed by rapid settling of pyroclastic sediments from highly concentrated and sustained pyroclastic density currents. In this case, the pyroclastic density currents were able to displace lake water from shoreline and the pyrolclastic density currents preserved their own heat except for frontal parts of the currents. As a result, welded textures can be formed despite entrance of pyroclastic density currents into the lake. The internal boundaries of the normally graded lapilli tuff reflect unsteady natures of the pyroclastic density currents at the time of the deposition and the pyroclastic density currents can not provide sufficient pressure to displace lake water. As a consequence, the pyroclastic density currents transformed into water-saturated turbidity currents, forming relatively well sorted, normally graded lapilli tuff.

Characteristics on the Occurrence of Oxidized Copper at Suparaura, Peru: Preliminary Study (페루 수빠라우라 산화동 산출지의 특성: 예비연구)

  • Kim, Eui-Jun;Heo, Chul-Ho;Koh, Sang-Mo
    • Economic and Environmental Geology
    • /
    • v.44 no.1
    • /
    • pp.11-20
    • /
    • 2011
  • Geological survey on the occurrence of copper oxide in Suparaura area around Abancay in the south-central part of Peru had been carried out. Geology of the area is composed of granitoids such as granodiorite, tonalite and andesitic porphyry related to Tertiary igneous activity, Ferrobamba formation with Cretaceous limestone and sandstone in descending order. Red sandstone is widely distributed and emplaced with their attitude of $N70^{\circ}W$ strike and $60^{\circ}NE$ dip. Copper oxides were mineralized along the bedding plane of red sandstone with maximum width of 30 cm. Ore-body structure bounding red sandstone strata have different occurrence characteristics with generally known porphyry system in terms of alteration, mineral assemblage and occurrence mode. Therefore, it is thought to be stratiform sediment-hosted copper (SSC) deposits genetically corresponding to Mississippi-valley type from preliminary study.

The Responses of Elementary Teachers and the Development of Teaching Materials for Geological Fieldwork in the Area of Mai Mountain (전북 마이산 일대의 야외지질 교수-학습자료 개발 및 초등 교사들의 반응)

  • Noh, Beyong-Seob;Ryang, Woo-Hun;Cho, Kyu-Seong
    • Journal of the Korean earth science society
    • /
    • v.30 no.7
    • /
    • pp.869-882
    • /
    • 2009
  • The purpose of this study is to develop teaching materials for geological fieldwork around the area of Mai Mountain and to analyze the responses of elementary teachers as to the application of fieldwork. The site of geological fieldwork, Mai Mountain area, is located around the Maisan Provincial Park of Jinan-gun, Jeonbuk Province where a large-scale sedimentary succession in the era of Cretaceous is shown. It provides an easy access to distinct outcrops around the provincial park. The sequences reveal different kinds of sedimentary rocks and various sedimentary structures, and provide information of the lacustrine sedimentary environments of the Cretaceous. In addition, metamorphic rocks and structures formed at the margin of the basement and the basinal fault as well as a sedimentary sequence of the Quaternary formed in a modern fluvial stream are observable. A 4-step fieldwork procedure was applied to a group of 13 elementary teachers. Through questionnaire and interview, results showed that (a) the geological fieldwork and materials were effective to positively increase science teaching from the participating teachers, and that (b) there is a great need of the development of various fieldwork sites and teaching materials that promote active fieldwork for students to have their lived experience and knowledge gain. It is suggested that teacher education programs be able to provide active fieldwork for elementary inservice teachers to properly carry out a geological fieldwork for their students.

Interpretation of Aeromagnetic Anomalies in the Southwestern Part of the Ogcheon Belt, Korea (옥천대 남서지역의 항공자력자료해석)

  • Baag Chang-Eob;Kang Taeseob;Lee Jung Mo
    • The Korean Journal of Petroleum Geology
    • /
    • v.4 no.1_2 s.5
    • /
    • pp.20-26
    • /
    • 1996
  • In order to uncover the subsurface geological structure in the southwestern rim of the Ogcheon Fold Belt including the Cretaceous Neungju Sedimentary Basin, we analysed and interpreted the aeromagnetic anomalies over the region. The study area belongs to Muan-gun, Yeongam-gun, Gangjin-gun, Jangheung-gun, and eastem Haenam-gun. From the qualitative analysis and quantitative modeling of the reduced-to-the-pole magnetic anomalies, following things are revealed or suggested; Even though the porphyry of higher susceptibility is not crop out in the Donggang Myeon in the northwestern part of the study area, it is supposed to have intruded the Precambrian gneiss and the Cretaceous Bulgugsa granite of lower susceptibility. Two-dimemsional modeling of profile data across the sedimentary basin of Neungiu Group reveals that the northern part of the basin is deeper than the southern part, and that the maximum depth of the basin is supposed to be $3\cal{km}$ below the surface. The western flank of the basin bottom is steeper than the eastern flank. The high susceptibility value of the Neungju Group sedimentary rocks indicates that the rocks comprises large amount of volcanic materials. This fact implies that it is hard to expect hydrocarbon reservoir in the sedimentary rocks of the Neungiu Basin.

  • PDF

Petrology of the Volcanic Rocks in Geoje Island, South Korea (거제도 화산암의 암석학적 연구)

  • 윤성효;이준동;이상원;고정선;서윤지
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.1-18
    • /
    • 1997
  • Andesitic pyroclastics and lava flows are deposited as a part of composite volcanoes by Cretaceous volcanic activity in Geojae Island, off the coast of Korea. The andesitic pyroclastics are composed of tuff breccia and lapilli tuff minor intercalated tuff. Lava flows are divided into dense and porphyritic andesite containing phenocrysts of plagioclase, pyroxene, and/or hornblende. The andesitic rocks represent charactersitcs of carc-alkaline BAR association with basalt, basaltic andesite, andesite, and dacite to rhyolite. Major element variations of the volcanic rocks show that $Al_2O_3$, total FeO, CaO, MgO and $TiO_2$ decrease with increasing $SiO_2$ but $K_2O$ and total alkalis increase, and represent differntiation trend of calc-alkaline rock series. In spider diagram, contents of Sr, K, Rb, Ba, and Th are relatively high, but contents of Nb, P, Ti and Cr are low. These petrochemcial characteristics are similar to those of rocks from island arc or continental margein related to plate subduction. Chondrite-normalized REE patterns of volcanic rocks are paralle to subparallel, with LREE enriched than HREE, and show gradual increase of negative Eu anomaly from basalt to dacite and rhyolite, suggesting comagmatic fractional crystallization with minor effects of assimilation and magma mixing. Andesitic rocks are assumed medium-K orogenic andesites that formed in the tectomagmatic environment of subduction zone under normal continental margin arc.

  • PDF