• Title/Summary/Keyword: 배터리 충전 상태

Search Result 123, Processing Time 0.02 seconds

A Study on Apparatus of Smart Wearable for Mine Detection (스마트 웨어러블 지뢰탐지 장치 연구)

  • Kim, Chi-Wook;Koo, Kyong-Wan;Cha, Jae-Sang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.263-267
    • /
    • 2015
  • current mine detector can't division the section if it is conducted and it needs too much labor force and time. in addition to, if the user don't move the head of sensor in regular speed or move it too fast, it is hard to detect a mine exactly. according to this, to improve the problem using one direction ultrasonic wave sensing signal, that is made up of human body antenna part, main micro processor unit part, smart glasses part, body equipped LCD monitor part, wireless data transmit part, belt type power supply part, black box type camera, Security Communication headset. the user can equip this at head, body, arm, waist and leg in removable type. so it is able to detect the powder in a 360-degree on(under) the ground whether it is metal or nonmetal and it can express the 2D or 3D film about distance, form and material of the mine. so the battle combats can avoid the mine and move fast. also, through the portable battery and twin self power supply system of the power supply part, combat troops can fight without extra recharge and we can monitoring the battle situation of distant place at the command center server on real-time. and then, it makes able to sharing the information of battle among battle combats one on one. as a result, the purpose of this study is researching a smart wearable mine detector which can establish a smart battle system as if the commander is in the site of the battle.

Functional Verification of Pin-puller-type Holding and Release Mechanism Based on Nylon Wire Cutting Release Method for CubeSat Applications (나일론선 절단 방식에 기반한 Pin-puller형 큐브위성용 태양전지판 구속분리장치의 기능검증)

  • Go, Ji-Seong;Son, Min-Young;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.81-88
    • /
    • 2021
  • In general, a non-explosive nylon wire cutting-based holding and release mechanism has been used to store and deploy deployable solar panels of CubeSat. However, with this method, accessing the solar panel's access port for charging the cube satellite's battery and electrical inspection and testing of the PCB and payloads while the solar panel is in storage is difficult. Additionally, the mechanism must have a reliable release function in an in-orbit environment, and reusability for stow and deploy of the solar panel, which is a hassle for the operator and difficult to maintain a consistent nylon wire fastening process. In this study, we proposed a pin-puller-based solar panel holding and release mechanism that can easily deploy a solar panel without cutting nylon wires by separating constraining pins. The proposed mechanism's release function and performance were verified through a solar panel deployment test and a maximum separation load measurement test. Through this, we also verified the design feasibility and effectiveness of the pin-puller-based separation device.

A Study on Development of Independent Low Power IoT Sensor Module for Zero Energy Buildings (제로 에너지 건축물을 위한 자립형 저전력 IoT 센서 모듈 개발에 대한 연구)

  • Kang, Ja-Yoon;Cho, Young-Chan;Kim, Hee-Jun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.3
    • /
    • pp.273-281
    • /
    • 2019
  • The energy consumed by buildings among the total national energy consumption is more than 10% of the total. For this reason, Korea has adopted the zero energy building policy since 2025, and research on the energy saving technology of buildings has been demanded. Analysis of buildings' energy consumption patterns shows that lighting, heating and cooling energy account for more than 60% of total energy consumption, which is directly related to solar power acquisition and window opening and closing operation. In this paper, we have developed a low - power IoT sensor module for window system to transfer acquired information to building energy management system. This module transmits the external environment and window opening / closing status information to the building energy management system in real time, and constructs the network to actively take energy saving measures. The power used in the module is designed as an independent power source using solar power among the harvest energy. The topology of the power supply is a Buck converter, which is charged at 4V to the lithium ion battery through MPPT control, and the efficiency is about 85.87%. Communication is configured to be able to transmit in real time by applying WiFi. In order to reduce the power consumption of the module, we analyzed the hardware and software aspects and implemented a low power IoT sensor module.