• Title/Summary/Keyword: 배터리 저장 시스템

Search Result 223, Processing Time 0.036 seconds

Analysis of the Effect of Alternating Current Ripple on Electrical State of Health Degradation of 21700 Lithium-ion Battery (교류 리플이 21700 리튬 이온 배터리의 전기적 건강 상태 열화에 미치는 영향 분석)

  • Bongwoo Kwak
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.477-485
    • /
    • 2023
  • In this paper, the effect of AC ripple on the lifetime of lithium-ion batteries is experimentally analyzed. Bidirectional power conversion system(PCS) is used to increase the efficiency of energy storage systems (ESS). When connected to the grid, a current ripple with a frequency twice the grid frequency is applied to the battery due to its structure. Therefore, to analyze the effect of AC ripple on Li-ion battery aging, cycle life test are performed by applying charge/discharge profiles of DC current and DC+AC current ripple specifications. Based on the experimental results, direct current internal resistance (DCIR), incremental capacitance (IC), and surface temperature were analyzed. As a result, it is confirmed that AC ripple does not directly affect degradation and that battery degradation slows down after a certain cycle. These results can serve as a guideline for optimizing filters to reduce ripple on the battery side in applications where AC ripple occurs.

Proposal of a Factory Energy Management Method Using Electric Vehicle Batteries (전기자동차 배터리를 활용한 공장의 에너지 관리 방안 제안)

  • Nam-Gi Park;Seok-Ju Lee;Byeong-Soo Go;Minh-Chau Dinh;Jun-Yeop Lee;Minwon Park
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.3
    • /
    • pp.67-77
    • /
    • 2024
  • Increasing energy efficiency in factories is an activity aimed at optimizing resource allocation in manufacturing processes to establish production plans. However, this strategy may not apply effectively when night shifts are unavoidable. Additionally, continuous fluctuations in production requirements pose challenges for its implementation in the factory. Recently, with the rapid proliferation of electric vehicles (EVs), technology utilizing electric vehicle batteries as energy storage systems has gained attention. Technology using these batteries can be an alternative for factory energy management. In this paper, a factory energy management method using EV batteries is proposed. The proposed method is analyzed using PSCAD/EMTDC software, considering the state of charge of EV batteries and Time-of-Use (TOU) rates. The proposed method was compared with production scheduling established considering predicted power usage and TOU rates. As a result, production scheduling saved 4,152 KRW per day, while the proposed method saved 7,286 KRW in electricity costs. Through this paper, the possibility of utilizing EV batteries for factory energy management has been demonstrated.

A Study on the Hybrid Fuel Cell System by using supercapacitor (수퍼커패시터를 이용한 하이브리드 연료전지시스템에 관한 연구)

  • Yoon, Seong-Sik;Choi, Won-Muk;Kim, Sung-Hoon;Kim, Tea-Kue;Ahn, Ho-Gyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.589-592
    • /
    • 2011
  • In this paper, bidirectional DC-DC converter is designed to cover up defects of fuel cell generating system like as low dynamic characteristic, unstable output and lack of storage ability by using bidirectional DC-DC Converter and supercapacitor that available to charge & discharge quickly, high efficient at charge & discharge and semi-permanent. Operating efficiency has been analyzed through simulation and examination. According to these design and data, hybrid system has been made and operation test, evaluation and results evaluation have been performed.

  • PDF

High Power Density and Low Cost Photovoltaic Power Conditioning System with Energy Storage System (에너지 저장장치를 갖는 고 전력밀도 및 저가격형 태양광 인버터 시스템)

  • Keum, Moon-Hwan;Jang, Du-Hee;Hong, Sung-Soo;Han, Sang-Kyoo;SaKong, Suk-Chin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.587-593
    • /
    • 2011
  • A new high power density and low cost Photovoltaic Power Conditioning System (PV PCS) with energy storage system is proposed. Its high power density and cost effectiveness can be achieved through the unification of the maximum power point tracker and battery charger/discharger. Despite of the reduced power stage, the proposed system can achieve the same performances of maximum power point tracking and battery charging/discharging as the conventional system. Moreover, the high voltage stress across the link-capacitor can be relieved through the series-connected link-capacitor with the battery. Therefore, a large number of series/parallel-connected link-capacitors can be reduced by 4-times. Especially, when the utility power failure happens, both photovoltaic and battery energies can be supplied to the load with only one power stage. Therefore, it features a simpler structure, less mass, lower cost, and fewer devices. Finally, to confirm the operation, validity, and features of the proposed system, theoretical analysis and experimental results from a single phase AC 220Vrms/1.5kW prototype are presented.

Performance Improvement of Eco-Friendly Electrical Machine Using Fast Charging System (급속충전시스템을 이용한 친환경 전동기기의 성능 개선)

  • Kim, Sung-Hyun;An, Sang-Yong;An, Chang-Doeuk
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1268-1269
    • /
    • 2011
  • 본 논문에서는 친환경 전동기기의 에너지 저장장치로 널리 사용되고 있는 Lead-Acid 배터리의 특성을 나타내었고, 급속충전을 하기 위한 충전패턴을 보였다. 기존 정전류-정전압 충전패턴이 적용된 상용 제품과 당사가 개발한 급속충전기의 비교 실험을 통해 충전 시간단축을 확인하였다. 급속충전 시스템의 적용을 통해 친환경 전동기기의 성능이 개선될 수 있음을 확인하였다.

  • PDF

The Analysis and Design of the Driving System for the Solar Car (한국교통대학교 Solar Car 구동 시스템 분석 및 설계)

  • Kim, IL-Song
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.5
    • /
    • pp.865-872
    • /
    • 2019
  • In this paper, we describe the Solar Car, Woongbi, which was created to participate in the World Solar Challenge(WSC) at the team NeulHaeRang of Korea National University of Transportation. The WSC is the world's largest solar car racing competition and has a separate automobile regulation and must be manufactured to meet the regulations. Therefore, the key point of the solar car design is to optimize the energy efficiency based on the regulations. The solar car's drive system consists of a solar array to convert solar energy into electric energy, a maximum power point tracker (MPPT) controller to track the converted electric energy to maximum output power, a battery to store the produced electric energy, a BLDC (Brushless DC) motor for driving the vehicle by converting energy into mechanical energy, and a motor controller for controlling the BLDC. The optimal design methods for solar energy conversion and electric driving system of battery, motor are presented in this paper.

Design of UPS system using SMB Flywheel Energy Storage System (초전도 플라이휠 에너지 저장시스템을 이용한 UPS 설계)

  • 정환명;최재호
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.6
    • /
    • pp.610-619
    • /
    • 2000
  • This paper presents an off-line UPS using the high temperature superconductive magnetic bearing. FES(Flywheel Energy Storage) system has good advantages in compare with lead acid battery. So, high efficiency FES using high temperature SMB(superconductive magnetic bearing) was composed in this paper. The outer rotor type of PMSM(Permanent Magnet Synchronous Motor) as motor/generator was used for the experiment, and square wave current and sinusoidal wave control methods was compared for high efficiency operation of motor/generator. The circuit for in phase sinusoidal wave current control with EMF in the full speed range was designed and the proposed flywheel energy storage system was applied in single phase off-line UPS system. As the stable operation characteristics of prototype system was confirmed, the its excellence as energy storage device in Off-line UPS was proved.

  • PDF

A Study on Hybrid Control Unit Using a Smart Control (스마트 제어를 이용한 하이브리드 형 제어장치 연구)

  • Kim, Hee-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.11
    • /
    • pp.1093-1100
    • /
    • 2016
  • This study is to demonstrate the superiority and stability of the solar - wind power hybrid power generation system for street lamps using super capacitor EDLC(:Electric Double Layer Capacitor). It is aiming to apply the lighting device using LED light source as the load of solar-wind power hybrid power generation system for independent power source and to develop the street light system device with high output power generation system. Unlike conventional controllers, EDLC, which is used as an auxiliary device for storing the developed power in the battery, can guarantee the high output and long life of the battery.

series-connected power conversion system integrating a photovoltaic power conditioner and a charge-balancing circuit (태양광 전력조절기와 배터리 전하 밸런스 회로를 통합시킨 직렬형 전력변환 시스템)

  • Lee, Hyun-jun;Shin, Jong-hyun;Park, Jong-hoo
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.470-471
    • /
    • 2014
  • 본 논문은 에너지 저장장치를 태양광 발전 시스템에 적용시에, 필요한 충전 균형회로를 전력조절기와 통합시키는 방법에 관한 것이다. 기존의 방식은 전력조절기와 별도로 충전 균형회로를 이용하게 되는데, 이는 복잡한 구성을 필요로 하고, 단가 상승의 원인이 된다. 본 논문에서는 태양광 전력변환 시스템 제작 단가를 낮추기 위해 태양광 모듈을 저장장치와 함께 직렬형 구조로 구성한 뒤 적절히 결선하여, 태양광 전력조절기를 셀 밸런싱 회로로 사용하는 방법을 제안하며, 이를 48W 하드웨어 제작 및 실험을 통해 검증하였다.

  • PDF

Analysis of Micro-grid Operations Including PV Source and Li Battery (태양광 전원과 Li 배터리를 포함하는 마이크로 그리드의 운영특성 해석)

  • Kim, Deok Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4692-4697
    • /
    • 2014
  • A micro-grid including photovoltaic source and Li battery has been installed and operated for several years at the campus of USF and been used as a test bed. Photovoltaic power source has been strongly influenced by the location, weather and climate of the installed area. To compensate for the uncertainty of photovoltaic source's power output, a Li battery is connected directly to the photovoltaic source and supplies electric power to the grid. The Li battery is operated to supply power output to the grid according to the charging or discharging mode of the battery based on the average power output of the photovoltaic source, which is calculated from the monitored data for several years. The grid of the photovoltaic and Li battery system is operated as a severe loading condition and the operating characteristics of PV source and Li battery cells are analyzed in detail.