• 제목/요약/키워드: 배태성

검색결과 290건 처리시간 0.023초

종합병원 간호사의 조직특성, 직무만족, 직무배태성 관련 이직의도 모형 (A Structural Model of Hospital Nurses' Turnover Intention: Focusing on Organizational Characteristics, Job Satisfaction, and Job Embeddedness)

  • 유미자;김종경
    • 간호행정학회지
    • /
    • 제22권3호
    • /
    • pp.292-302
    • /
    • 2016
  • Purpose: This study was done to build and verify a model of clinical nurses' turnover intention using organizational characteristics, job satisfaction and job embeddedness. Methods: The study participants were 389 hospital nurses. SPSS and AMOS 22.0 program were used to analyze the data and the modeling of turnover intention. Results: A total of 41% of turnover intention was explained by job satisfaction, job embeddedness and organizational characteristics. Nurses with higher job satisfaction and job embeddedness showed lower turnover intention, while organizational characteristics had an indirect effect on their turnover intention. It was found that organizational characteristics had positive effects on both job satisfaction and job embeddedness, and job embeddedness played a mediating role between organizational characteristics and turnover intention. Conclusion: To reduce nurses' turnover intention, hospitals' organizational characteristics should be considered. Nurse managers should strive to increase nurses' job satisfaction and job embeddedness through an understanding of the factors of organizational characteristics such as organizational fairness, nursing work environment, motivation, organizational citizenship behavior, and transformational leadership.

하퇴절단자용 단축식 발과 스포츠용 에너지 저장형 발 보행 특성 비교연구 (A Comparative Study of Gait Characteristics between Single Axis Foot and Energy Storing Foot for Sports in Trans-tibial Amputee)

  • 장윤희;배태수;김신기;문무성
    • 한국정밀공학회지
    • /
    • 제26권2호
    • /
    • pp.126-132
    • /
    • 2009
  • This study examined the differences in spatio-temporal parameters, joint angle, ground reaction force (GRF), and joint power according to the changes of gait speed for trans-tibial amputees to investigate the features of the energy-storing foot for sports. The subjects walked at normal speed and at fast speed, wearing a single-axis type foot (Korec) and an energy-storing foot for sports (Renegade) respectively. The results showed that Renegade yielded faster gait speed as well as more symmetric gait pattern, compared to Korec. However, as gait speed was increased, there was no significant difference in kinematics, ground reaction force, and joint power between two artificial foots. This was similar to the results from previous studies regarding the energy-storing foot, where the walking velocity and gait symmetry have been improved. Nevertheless, the result of this study differed from the previous ones which reported that joint angle, joint power, and GRF increased as the gait speed increased except spatio-temporal parameters.

인공의족의 외반 특성이 하퇴절단자의 무릎과 발목에 미치는 영향 (Effect of Eversion Characteristics on Knee and Ankle Joint of Trans-tibial Amputees)

  • 배태수;장윤희;김신기;문무성
    • 대한기계학회논문집A
    • /
    • 제33권9호
    • /
    • pp.886-891
    • /
    • 2009
  • One of the important functions of prosthetic foot is the foot inversion-eversion which is so important when walking on uneven surfaces. The aim of our study was to evaluate the effect of foot eversion angle especially on knee and ankle joint for transtibial amputees by motion analysis. The experimental data were collected from three transtibial amputees and then ten healthy individuals. To simulate walking on side sloping ground, we used custom-made slope (5, 10, 15 degrees). Motion analysis was performed by 3-dimensional motion analyzer for 6 dynamic prosthetic feet. The results showed that knee abduction moments of amputated leg were decreased but those of sound leg were mainly increased as foot eversion angle increased. And ankle abduction moments of sound leg were inconsistent in magnitude and tendency between control and experimental group. Therefore foot eversioncharacteristics should be considered to develop advanced prosthetic foot.

아두이노를 활용한 자전거 운전자 안전 향상 시스템 (Improving Safety of Biycle Driver System using Arduino)

  • 배태현;강종호;박지원;김범수;이붕주
    • 한국전자통신학회논문지
    • /
    • 제12권4호
    • /
    • pp.525-532
    • /
    • 2017
  • 본 논문에서는 자전거의 보호와 탑승자의 안전을 위하여 아두이노와 센서를 활용하여 시스템을 구성하였다. 리밋 스위치를 통하여 15 km/h이하, 15~30km/h, 30km/h 이상 속도에 따른 알림과 더불어 과속시 경고를 주고 실제 속도와 96.6% 일치하는 속도계를 구현한다. 또한 야간에 파악하기 힘든 5cm이하의 장애물을 감지하기 위하여 약 3m거리에서 초음파센서를 통해 이를 인지하고 경고를 한다. 자전거의 보호를 위하여 자물쇠 파손 시 사용자의 핸드폰에 메시지를 전송하고, Auto Lock System이 제어 되도록 한다. 사용자의 편의성을 고려하여 칼로리 소모를 알 수 있도록 어플리케이션을 제작하였다.

휠체어 전동주행 보조기기용 커넥터의 구조안정성 해석 (Structural Stability Analysis of Connectors for an Electric Handbike)

  • 서한울;김대동;고철웅;이준흠;배태수
    • 한국정밀공학회지
    • /
    • 제32권5호
    • /
    • pp.491-496
    • /
    • 2015
  • Electric handbike can be easily detachable to various sizes of manual wheelchair and the elderly and people with disabilities can use them easily. Therefore, connectors used for coupling between the handbike and manual wheelchair must secure structural stability for occupant safety. However, related research is rare. The aim of this study is to find the connector with highly structural stability by comparing static and dynamic mechanical characteristics among three typical connectors(a snatch lock, a slide latch, and a fastener) by computational simulations. To perform static and dynamic simulation, we referred to durability test based on Korean Standards and then calculated mechanical stresses in connectors. The results showed that the snatch lock addressed the lowest von-mises stress under the same mechanical condition. Therefore when using the combination of a handbike and a wheelchair, we concluded that the snatch lock is considered as the structurally stable connector to structural stability and usability.

근골격 모델을 이용한 대퇴절단환자의 계단보행에 대한 동역학 해석 (Dynamic Analysis of Stair Climbing for the Above-knee Amputee with Musculoskeletal Models)

  • 배태수;김신기;문무성
    • 한국정밀공학회지
    • /
    • 제24권7호
    • /
    • pp.133-138
    • /
    • 2007
  • It is important to understand the characteristics of amputee gait to develop more advanced prostheses. The aim of this study was quantitatively to analyze the stair climbing task for the above-knee amputee with a prosthesis and to predict muscle forces and joint moments at musculoskeletal joints by dynamic analysis. The three-dimensional musculoskeletal model of lower extremities was constructed by gait analysis and transformation software for one above-knee amputee and ten healthy people. The measured ground reaction forces and kinematical data of each joint by gait analysis were used as input data during inverse dynamic analysis. Lastly, dynamic analysis of above-knee amputee during stair climbing were performed using musculoskeletal models. The results showed that summed muscle farces of hip extensor of amputated leg were greater than those of sound leg but the opposite results were revealed at hip abductor and knee flexor of amputated leg. We could also find that the higher moments at hip and knee joint of sound leg were needed to overcome the flexion moment caused by body weight and amputated leg. In conclusion, dynamic analysis using musculoskeletal models may be a useful mean to predict muscle forces and joint moments for specific motion tasks related to rehacilitation therapy..

동물실험용 골융합 임플란트 시스템 개발 (Development of the Osseo-integrated Implant system for Laboratory Animals)

  • 배태수;허현;김신기;문무성;안재용;홍성란
    • 한국정밀공학회지
    • /
    • 제24권10호
    • /
    • pp.117-122
    • /
    • 2007
  • The novel implant system was developed using osseo-integration technology which enable amputee to overcome skin troubles in use of previous socket system and was evaluated in view of biomechanics, radiology, histology, and pathology. The osseo-integrated implants were designed and manufactured using CT image of canine's tibia and were applied to laboratory animals (canines). The follow-up studies were performed for 24 months with 10 canines. In radiology examination, we found that the relative low strain distribution caused medial and posterior bone resorption and then we verified them by biomechanical testing. In histological approach, the complete osseo-integration was observed through the activity of osteoblast cells around bone-implant interface and the radial outer region of bone due to peristeum reaction. Lastly in pathological aspect, the evidence of superficial infection was detected but that of deep infection was not. Therefore it is thought that infection problem will be overcome by immunity of body and good hygiene.

홍천 철-희토류 광상의 편마암질 주변암에 대한 SHRIMP U-Pb 연령측정 (SHRIMP U-Pb Age Determination for the Gneissic Country Rocks Around the Hongcheon Iron-REE Depsosit)

  • 김명정;박계헌;고상모;이기욱
    • 암석학회지
    • /
    • 제22권4호
    • /
    • pp.299-305
    • /
    • 2013
  • 홍천에는 카보내타이트-포스코라이트 복합체로 구성된 철-희토류 광상이 분포한다. 이 광상배태 지역의 모암인 변성암류에 대한 저어콘 U-Pb 연대측정을 실시하였다. 그 결과 약 1830Ma의 연령이 확인되었다. 이러한 연령은 경기육괴에서 일반적으로 산출되는 1870Ma의 화성 및 변성연령보다 다소 젊은 연령이며, 경기육괴의 고원생대 지질사건들의 시기와 지구조적 진화에 대한 보다 정밀한 연구의 필요성을 제기한다.

레벨 러핑 크레인 붐에 대한 구조설계의 건전성 평가 (Structure Evaluation for the Level Luffing Crane' Boom)

  • 김민생;이재철;정석용;안성훈;손지원;조광제;송철기;박실룡;배태한
    • 대한기계학회논문집A
    • /
    • 제32권6호
    • /
    • pp.526-532
    • /
    • 2008
  • Structure evaluation for 70/15 $T{\times}105\;m$ LLC(Level Luffing Crane)'s boom was conducted by Finite Element Method. Boom modeled with beam element was fixed by luff rope and boom mount and was received loads from self weight, luff hoisting, traveling motion, slewing motion, and wind force, etc. These applied loads were calculated using various factors presented in the reference standards and were inputted in the analysis model after considering about the adverse conditions of LLC. In the research, deformation, stresses, buckling of boom were evaluated by ANSYS. Structural safety of boom was confirmed in the results of numerical analysis.

슬관절 등속 운동시 하지근육구동모델;모의실험과 임상실험 (Musculoskeletal model during isokinetic knee motion;Simulation and Experiment)

  • 배태수;조현석;강성재;최경주;김신기;문무성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1554-1559
    • /
    • 2003
  • This study validated the musculoskeletal model of the human lower extremity by comparative study between calculated muscle parameters through simulation using modified hill-type model and measured them through isokinetic exercise. And the relationship between muscle forces and moments participated in motion was quantified from the results of simulation. For simulation of isokinetic motion, a three-dimensional anatomical knee model was constructed using trials of gait analysis and the EMG-force model was used to determine muscle activation level exciting muscles. The modified Hill-type model was used to calculate individual muscle forces and moments in dynmaic analysis and the results were validated by comparing them of experiments on BIODEX. The results showed that there was a high correlation between calculated torques from simulation and measured them from experiments for isokinetic motion(R=0.97). Therefore we concluded that the simulation by using musculoskeletal model was so useful means to predict and convalesce musculoskeletal-related diseases, and analyze unrealizable experiment such as clash condition.

  • PDF