• 제목/요약/키워드: 배치정규화

검색결과 38건 처리시간 0.025초

Banded Smith-Waterman 알고리즘을 이용하여 정규화된 부분배치를 찾는 새로운 알고리즘 (A new algorithm for finding normalized local alignment using handed Smith-Waterman algorithm)

  • 김상태;심정섭;박희진;박근수;박현석;서정선
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (1)
    • /
    • pp.592-594
    • /
    • 2001
  • 두 문자열의 부분배치(local alignment)를 찾는 대표적인 알고리즘인 Smith-Waterman 알고리즘(SW 알고리즘)은 정규화된 최적부분배치를 찾지 못하는 단점이 있다. 최근에 fractional programming 기법을 이용하여 여러 번의 SW 알고리즘을 수행함으로써 정규화된 최적부분배티를 찾는 알고리즘이 제시되었지만 이는 매우 많은 시간이 걸린다. 본 논문에서는 fractional programming 기법을 이용하여 정규화된 최적부분배치를 찾는 알고리즘에, 완전매치(Exact Match)을 이용한 휴리스틱 기법인 Banded SW 알고리즘을 적용하여, 낮은 오차를 가지면서 실용적으로 매우 빠른 정규화된 최적부분배치를 찾는 알고리즘을 제시하고 이 알고리즘과 제시하고 이 알고리즘과 기존의 알고리즘을 직접 구현하여 실험한 결과를 비교 분석한다.

  • PDF

배치 정규화와 CNN을 이용한 개선된 영상분류 방법 (An Improved Image Classification Using Batch Normalization and CNN)

  • 지명근;전준철;김남기
    • 인터넷정보학회논문지
    • /
    • 제19권3호
    • /
    • pp.35-42
    • /
    • 2018
  • 딥 러닝은 영상 분류를 위한 여러 방법 중 높은 정확도를 보이는 방법으로 알려져 있다. 본 논문에서는 딥 러닝 방법 가운데 합성곱 신경망 (CNN:Convolutional Neural Network)을 이용하여 영상을 분류함에 있어 배치 정규화 방법이 추가된 CNN을 이용하여 영상 분류의 정확도를 높이는 방법을 제시하였다. 본 논문에서는 영상 분류를 더 정확하게 수행하기 위해 기존의 뉴럴 네트워크에 배치 정규화 계층 (layer)를 추가하는 방법을 제안한다. 배치 정규화는 각 계층에 존재하는 편향을 줄이기 위해 고안된 방법으로, 각 배치의 평균과 분산을 계산하여 이동시키는 방법이다. 본 논문에서 제시된 방법의 우수성을 입증하기 위하여 SHREC13, MNIST, SVHN, CIFAR-10, CIFAR-100의 5개 영상 데이터 집합을 이용하여 영상분류 실험을 하여 정확도와 mAP를 측정한다. 실험 결과 일반적인 CNN 보다 배치 정규화가 추가된 CNN이 영상 분류 시 보다 높은 분류 정확도와 mAP를 보임을 확인 할 수 있었다.

잘피 서식지 모니터링을 위한 딥러닝 기반의 드론 영상 의미론적 분할 (Semantic Segmentation of Drone Imagery Using Deep Learning for Seagrass Habitat Monitoring)

  • 전의익;김성학;김병섭;박경현;최옥인
    • 대한원격탐사학회지
    • /
    • 제36권2_1호
    • /
    • pp.199-215
    • /
    • 2020
  • 잘피는 연안해역에 서식하는 해양수생관속식물로 해양생태계의 중요한 역할을 하고 있어, 주기적인 잘피 서식지의 모니터링이 이루어지고 있다. 최근 효율적인 잘피 서식지의 모니터링을 위해 고해상도의 영상 획득이 가능한 드론의 활용도가 높아지고 있다. 그리고 의미론적 분할에 있어 합성곱 신경망 기반의 딥러닝이 뛰어난 성능을 보임에 따라, 원격탐사 분야에 이를 적용한 연구가 활발하게 이루어지고 있다. 그러나 다양한 딥러닝 모델, 영상, 그리고 하이퍼파라미터에 의해 의미론적 분할의 정확도가 다르게 나타나고, 영상의 정규화와 타일과 배치 크기에서도 정형화되어 있지 않은 상태이다. 이에 따라 본 연구에서는 우수한 성능을 보여주는 딥러닝 모델을 이용하여 드론의 광학 영상에서 잘피 서식지를 분할하였다. 그리고 학습 자료의 정규화 및 타일의 크기를 중점으로 결과를 비교 및 분석하였다. 먼저 정규화와 타일, 배치 크기에 따른 결과 비교를 위해 흑백 영상을 만들고 흑백 영상을 Z-score 정규화 및 Min-Max 정규화 방법으로 변환한 영상을 사용하였다. 그리고 타일 크기를 특정 간격으로 증가시키면서 배치 크기는 메모리 크기를 최대한 사용할 수 있도록 하였다. 그 결과, Z-score 정규화가 적용된 영상이 다른 영상보다 IoU가 0.26 ~ 0.4 정도 높게 나타났다. 또한, 타일과 배치 크기에 따라 최대 0.09까지 차이가 나타나는 것을 확인하였다. 딥러닝을 이용한 의미론적 분할에 있어 정규화, 타일의 배치 크기의 변화에 따른 결과가 다르게 나타났다. 그러므로 실험을 통해 이들 요소에 대한 적합한 결정 과정이 있어야 함을 알 수 있었다.

모듈 방향 결정 문제 해결을 위한 정규화된 평균장 어닐링 알고리즘 (Normalized Mean Field Annealing Algorithm for Module Orientation Problem)

  • 정균락
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제27권12호
    • /
    • pp.988-995
    • /
    • 2000
  • 각 모듈들의 위치가 배치 알고리즘에 의해 결정된 후에도 모듈들을 종축 또는 횡축을 중심으로 뒤집거나 회전시킴으로써 회로의 효율성과 연결성을 향상시킬 수 있다. 고집적 회로설계의 한 단계인 모듈방향 결정 문제는 모듈간에 연결된 선의 길이의 합이 최소가 되도록 각 모듈의 방향을 결정하는 문제이다. 최근에 평균장 어닐링 방법이 조합적 최적화 문제에 사용되어 좋은 결과를 보여 주고 있다. 평균장 어닐링은 신경회로망의 따른 수렴 특성과 시뮬레이티드 어닐링의 우수한 해를 생성하는 특성이 결합된 방법이다. 본 논문에서는 정규화된 평균장 어닐링을 사용해서 모듈 방향 결정 문제를 해결하였고 실험을 통해 기존의 Hopfield 네트워크 방법과 시뮬레이티드 어닐링과 그 결과를 비교하였다. 시뮬레이티드 어닐링, 정규화된 평균장 어닐링과 Hopfield 네트워크의 총 길이 감소율은 각각 19.86%, 19.85%, 19.03%였으며, 정규화된 평균장 어닐링의 실행 시간은 Hopfield 네트워크보다는 1.1배, 시뮬레이티드 어닐링보다는 11.4배 정도 빨랐다.

  • PDF

Improving Test Accuracy on the MNIST Dataset using a Simple CNN with Batch Normalization

  • Seungbin Lee;Jungsoo Rhee
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권9호
    • /
    • pp.1-7
    • /
    • 2024
  • 본 논문은 MNIST 데이터셋을 활용한 손글씨 숫자 인식에서 합성곱 신경망(CNN)과 배치정규화(BN)를 결합한 모델을 제안한다. LeCun et al.의 LeNet-5 모델의 성과를 뛰어넘는 것을 목표로 6계층 신경망 구조를 설계하였다. 제안된 모델은 28×28 픽셀 이미지를 입력으로 받아 합성곱, 맥스 풀링, 완전연결계층을 거쳐 처리하며, 특히 배치정규화계층을 도입하여 학습 안정성과 성능을 향상시켰다. 실험에서는 60,000개의 훈련 이미지와 10,000개의 테스트 이미지를 사용하였으며, Momentum 최적화 알고리즘을 적용하였다. 모델 구성에서는 30개의 필터, 필터 사이즈 5×5, 패딩 0, 스트라이드 1을 사용하였고, ReLU 활성화 함수를 채택하였다. 훈련 과정에서는 미니배치 사이즈 100, 총 20 에포크, 학습률 0.1로 설정하였다. 결과적으로 제안된 모델은 99.22%의 테스트 정확도를 달성하여 LeNet-5의 99.05%를 상회하였으며, F1-score 0.9919를 기록하여 모델의 성능을 입증하였다. 또한, 본 논문에서 제안한 6계층 모델은 LeCun et al.의 LeNet-5(7계층 모델)와 Ji, Chun and Kim(10계층 모델)이 제안한 모델보다 더 단순한 구조로 모델의 효율성을 강조하였다. 본 연구의 결과는 AI 비전 검사기 등 실제 산업 응용에서 활용 가능성을 보여주며, 특히 스마트팩토리에서 부품의 불량 상태를 판별하는 데 효과적으로 적용될 수 있을 것으로 기대된다.

Scalogram과 Switchable 정규화 기반 합성곱 신경망을 활용한 베이링 결함 탐지 (Scalogram and Switchable Normalization CNN(SN-CNN) Based Bearing Falut Detection)

  • ;김윤수;석종원
    • 전기전자학회논문지
    • /
    • 제26권2호
    • /
    • pp.319-328
    • /
    • 2022
  • 베어링은 기계가 작동할때 중요한 역할을 한다. 때문에, 베어링에 결함이 발생하면 기계전체의 치명적인 결함을 발생시킨다. 그러므로 베어링 결함은 조기에 발견되어야한다. 본 논문에서는 연속 웨이블릿 변환과 Switchable 정규화를 기반으로 한 합성곱 신경망(SN-CNN)을 이용한 방법을 베어링 결함 감지 모델에 대해 설명한다. 모델의 정확도는 Case Western Reserve University(CWRU) 베어링 데이터 집합을 사용하여 측정되었다. 또한 배치 정규화(BN, Batch Normalization)[1] 방법과 스펙트로그램 이미지가 모델 성능의 비교를 위해 사용되었다.

이미지 저작권 판별을 위한 기계학습 적용과 분석 (Application and Analysis of Machine Learning for Discriminating Image Copyright)

  • 김수인;이상우;김학희;김원겸;황두성
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.899-902
    • /
    • 2021
  • 본 논문은 이미지 저작권 유무 판별을 분류 문제로 정의하고 기계학습과 합성곱 신경망 모델을 적용하여 해결한다. 학습을 위해 입력 데이터를 고정된 크기로 변환하고 정규화 과정을 수행하여 학습 데이터셋을 준비한다. 저작권 유무 판별 실험에서 SVM, k-NN, 랜덤포레스트, VGG-Net 모델의 분류 성능을 비교 분석한다. VGG-Net C 모델의 결과가 다른 알고리즘과 비교 시 10.65% 높은 성능을 나타냈으며 배치 정규화 층을 이용하여 과적합 현상을 개선했다.

기계학습 기반 다중 레이블 분류를 이용한 실시간 전략 게임에서의 상대 행동 예측 (Opponent Move Prediction of a Real-time Strategy Game Using a Multi-label Classification Based on Machine Learning)

  • 신승수;조동희;김용혁
    • 한국융합학회논문지
    • /
    • 제11권10호
    • /
    • pp.45-51
    • /
    • 2020
  • 최근 많은 게임이 사용자의 게임 플레이와 관련된 데이터를 제공하고 있고, 이에 기계학습 기법을 결합하여 상대의 행동을 예측하는 연구들이 있다. 본 연구는 실시간 전략 게임(클래시로얄)의 경기 데이터와 기계학습 기반의 다중 레이블 분류를 사용하여 상대 플레이어의 행동을 예측한다. 초기 실험은 이진 형태의 카드 특성과 카드 배치 좌표 그리고 정규화된 시간 정보를 입력받아 카드 타입, 카드 배치 좌표를 랜덤포레스트와 다층 퍼셉트론을 이용하여 예측한다. 이후, 순차적으로 3 가지 전처리 방식을 사용하여 실험을 진행했다. 먼저 입력 데이터의 특성 정보 일부를 변환시켜 예측했다. 다음으로 입력 데이터를 연속된 카드 입력 방식까지 고려한 중첩 형태로 변환 시켜 예측했다. 마지막으로 모든 이전 단계의 데이터들을 정규화된 시간 기준에 따라 초반, 후반으로 분할하여 예측했다. 그 결과 가장 개선을 보인 전처리 방식은 중첩 형태의 데이터를 초반으로 분할하였을 경우로 카드 타입이 약 2.6%, 카드 배치 좌표가 약 1.8% 개선을 보였다.

정규화 및 항등사상이 활성함수 성능에 미치는 영향 (The Effect of regularization and identity mapping on the performance of activation functions)

  • 류서현;윤재복
    • 한국산학기술학회논문지
    • /
    • 제18권10호
    • /
    • pp.75-80
    • /
    • 2017
  • 본 논문에서는 딥러닝에서 활용되는 정규화(regularization) 및 항등사상(identity mapping)이 활성함수(activation function) 성능에 미치는 영향에 대해 설명한다. 딥러닝에서 활성함수는 비선형 변환을 위해 사용된다. 초기에는 sigmoid 함수가 사용되었으며, 기울기가 사라지는 기존의 활성함수의 문제점을 극복하기 위해 ReLU(Rectified Linear Unit), LReLU(Leaky ReLU), PReLU(Parametric ReLU), ELU(Exponetial Linear Unit)이 개발되었다. 활성함수와의 연구와는 별도로 과적합(Overfitting)문제를 해결하기 위해, Dropout, 배치 정규화(Batch normalization) 등의 정규화 방법들이 개발되었다. 추가적으로 과적합을 피하기 위해, 일반적으로 기계학습 분야에서 사용되는 data augmentation 기법이 활용된다. 딥러닝 구조의 측면에서는 기존에 단순히 컨볼루션(Convolution) 층을 쌓아올리는 구조에서 항등사상을 추가하여 순방향, 역방향의 신호흐름을 개선한 residual network가 개발되었다. 위에서 언급된 활성함수들은 각기 서로 다른 특성을 가지고 있으나, 새로운 정규화 및 딥러닝 구조 연구에서는 가장 많이 사용되는 ReLU에 대해서만 검증되었다. 따라서 본 논문에서는 정규화 및 항등사상에 따른 활성함수의 성능에 대해 실험적으로 분석하였다. 분석을 통해, 정규화 및 항등사상 유무에 따른 활성함수 성능의 경향을 제시하였으며, 이는 활성함수 선택을 위한 교차검증 횟수를 줄일 수 있을 것이다.

대학도서관 인력 현황에 관한 현장 인식 조사 (Field Perceptions on the Staffing Situation of Academic Libraries)

  • 나은엽;나상오;이종욱
    • 한국도서관정보학회지
    • /
    • 제55권1호
    • /
    • pp.123-143
    • /
    • 2024
  • 본 연구에서는 최근 10년간 대학도서관 인력 현황 변화 양상을 분석하고 대학도서관 현장에 근무하는 사서들을 대상으로 인력 현황과 현재 적용되고 있는 대학도서관 인력 배치 기준에 대한 인식을 조사하였다. 인력 변화에 대한 분석은 2014년부터 2023년까지 10년간의 대학도서관 통계 데이터를 활용하였다. 인식 조사는 도서관 직원을 대상으로 온라인 설문을 실시하였고, 4년제 대학과 전문대학 도서관 소속 응답자 216명의 응답을 분석하였다. 인력 변화 분석 결과, 대규모 4년제 대학과 전문대학 도서관에서 평균 직원 수는 감소하였는데, 정규직은 감소하는 반면 비정규직은 증가하는 추세를 보였다. 설문조사 결과 이러한 원인을 학령인구 및 입학 정원의 감소, 대학의 예산 부족 및 구조 조정 등에서 찾을 수 있었다. 대학도서관 인력 배치 기준에 대한 4년제 대학, 전문대학 직원들의 인식은 대부분 부정적이었고 이에 대한 개선 방안으로는 기준 수의 상향 및 세분화, 정사서 및 정규직을 명시한 기준의 구체화, 기준 산출 항목의 수정, 기준 이행의 강제성 강화 등이 제시되었다. 본 연구의 결과는 대학도서관 인력 배치 현황에 대한 이해를 높이고 현장 사서들의 인식을 파악하여 향후 대학도서관 인력 배치 기준 개선을 위한 기초적인 자료로 활용할 수 있을 것이다.