• Title/Summary/Keyword: 배출온도

Search Result 840, Processing Time 0.027 seconds

Research for Performance Improvement of De-NOx of Cu-SCR Catalysts (Cu-SCR 촉매의 De-NOx 성능 향상을 위한 연구)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.112-118
    • /
    • 2018
  • In order to meet the strict emission regulations for internal combustion engines based on fossil fuel, the proportion of after-treatments for vehicles and vessels is gradually increasing. Diesel engines have high power, good fuel economy, and lower $CO_2$ emissions, and their market shares are increasing in commercial vehicles and passenger cars. However, NOx is generated in the localized high-temperature combustion regions, and particulate matter is formed in the zones of diffusion combustion. LNT and urea-SCR catalysts have been developed for after-treatment of the exhaust gas to reduce NOx in diesel vehicles. This study aims to improve the NOx reduction performance of Cu SCR catalyst, which is widely used in light, medium, and heavy-duty diesel engines. The de-NOx performance of $5Cu-2ZrO_2$/93Zeolyst(Si/Al=13.7) SCR catalyst was about 5-50% higher than that of $5Cu-2ZrO_2$/93Zeolite(Si/Al=2.9) at catalyst temperatures of $300^{\circ}C$ or higher. The zeolite had lower metal dispersion than zeolyst, and the reaction rate of the catalyst decreased as the average particle size increased. The $10Cu-2ZrO_2$/88Zeolyst catalyst loaded with 10wt% Cu had the highest NOx conversion rate of 40% at $200^{\circ}C$ and about 65% at $350^{\circ}C$. The ion exchange rate of Cu ions increased with that of Al, the crystalline compound of zeolite, and the de-NOx performance was improved by 20-40% compared to other catalysts.

Combustion characteristics of two imported Indonesia coals as a pulverized fuel of thermal power plants (인도네시아산 발전용 수입 석탄 2종의 연소특성 비교 평가)

  • Lee, Hyun-Dong;Kim, Jae-Kwan
    • Journal of Energy Engineering
    • /
    • v.19 no.2
    • /
    • pp.136-142
    • /
    • 2010
  • Combustion reactivity and thermal behavior of two imported coals used as a pulverized fuel of commercially thermal power plant were investigated by thermogravimetric analysis (TGA) and large scale test furnace of 200 kg/hr. TGA results showed that combustion efficiency of high moisture coal has lower than reference coal due to the slow combustion completion rate although it has the low ignition temperature, and activation energies of high moisture coal with 79 kJ/mol for overall combustion was higher than reference coal of 53 kJ/mol. Test furnace results ascertained that flame of black band of high moisture coal during the combustion in boiler broke out compared to reference coal and then it becomes to unburned carbon due to the less reactivity and combustion rate. But, Blending combustion of high moisture coal with design coal of high sulfur are available because sulfur content of high moisture coal was too low to generate the low SOx content in flue gas from boiler during the combustion. The ash analysis results show that it was not expected to be associated with slagging and fouling in pulverized coal fired systems due to the low alkali metal content of $Na_2O$ and $K_2O$ compared to bituminous coal.

Numerical Analysis of CO2 Behavior in the Subsea Pipeline, Topside and Wellbore With Reservoir Pressure Increase over the Injection Period (시간 경과에 따른 저류층 압력 상승이 파이프라인, 탑사이드 및 주입정 내 CO2 거동에 미치는 영향에 대한 수치해석적 연구)

  • Min, Il Hong;Huh, Cheol;Choe, Yun Seon;Kim, Hyeon Uk;Cho, Meang Ik;Kang, Seong Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.4
    • /
    • pp.286-296
    • /
    • 2016
  • Offshore CCS technology is to transport and inject $CO_2$ which is captured from the power plant into the saline aquifer or depleted oil-gas fields. The more accumulated injected $CO_2$, the higher reservoir pressure increases. The increment of reservoir pressure make a dramatic change of the operating conditions of transport and injection systems. Therefore, it is necessary to carefully analyze the effect of operating condition variations over the injection period in early design phase. The objective of this study is to simulate and analyze the $CO_2$ behavior in the transport and injection systems over the injection period. The storage reservoir is assumed to be gas field in the East Sea continental shelf. The whole systems were consisted of subsea pipeline, riser, topside and wellbore. Modeling and numerical analysis were carried out using OLGA 2014.1. During the 10 years injection period, the change of temperature, pressure and phase of $CO_2$ in subsea pipelines, riser, topside and wellbore were carefully analyzed. Finally, some design guidelines about compressor at inlet of subsea pipeline, heat exchanger on topside and wellhead control were proposed.

DeNOx by Hydrocarbon-Selective Catalytic Reduction on Ag-V/γ-Al2O3 Catalyst (Ag-V/γ-Al2O3 촉매상에서 탄화수소-Selective Catalytic Reduction에 의한 질소산화물 저감)

  • Kim, Moon-Chan;Lee, Cheal-Gyu
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.328-336
    • /
    • 2005
  • In order to remove the NO contained in exhaust gas by the non-selective catalyst reduction method, the catalysts were prepared by varing the loading amount of Ag and V into ${\gamma}-Al_2O_3$. The conversion of $NO_x$ using the prepared catalysts was studied by varying the temperatures, $O_2$ concentrations and $SO_2$ concentrations using. The influence of the catalyst structure on $NO_x$ conversion was studied through the analysis of the physical properties of the prepared catalysts. In the case of $AgV/{\gamma}-Al_2O_3$ catalyst, the $NO_x$ conversion was lower than that of $Ag/{\gamma}-Al_2O_3$ at higher temperatures but higher than that of $Ag/{\gamma}-Al_2O_3$ at lower temperatures. Even though $SO_2$ was contained in the reaction gas, the $NO_x$ conversion did not decrease. Based on the analysis including XRD, XPS, TPR, and UV-Vis DRS before and after the experiments, the experimental results were examined. The results indicated that, $NO_x$ conversion decreased at higher temperatures since Ag oxide could not be maintained well due to the addition of V, whereas it increased at temperatures lower than $300^{\circ}C$ due to the catalytic action of V.

A Study on Waste Heat Recycling of Plasma Melting System (플라즈마 용융 공정시의 폐열 재활용 연구)

  • Kim, Seong-Jung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.3
    • /
    • pp.85-90
    • /
    • 2006
  • The purpose of this research is to design an imitation boiler similar to the waste heat boiler installed on a plasma melting furnace in order to acquire a capability of a thermal design as to the circulation of heat and the discharge of noxious gas inside a boiler and to improve the efficiency of a waste heat boiler using the CFD (Computation Fluid Dynamics) program. The position of corrosion and the generation of a clinker inside a boiler due to temperature changes, combustion gas flows, and corrosive gases inside a boiler are examined to design the structure of an efficient boiler and recycle energy. As a result of this research, the boiler installed on a plasma melting furnace met the conditions of design by cooling the combustion gases discharged after the second combustion from an exhaust port, originally at 1,200 degrees Celsius, down to around 450 degrees Celsius. On the other hand, the circulation of corrosive gases (SOx and HCL) may lead to the generation of corrosion or a clinker in the upper and lower parts of an exhaust port more easily than any other parts of a boiler. Accordingly, the corrosion on the inside and outside walls of a boiler may result in a shortened lifespan of a boiler and an inability to recycle waste heat in an efficient manner. A prevention against corrosion at high and low temperatures needs to be considered in detail.

  • PDF

A Study on the Planning Criteria for Thalassotherapy Facility (해양치유시설 계획기준에 관한 연구)

  • Lee, Han-Seok;Kang, Young-Hun;Seong, Hai-Min
    • Journal of Navigation and Port Research
    • /
    • v.44 no.1
    • /
    • pp.20-31
    • /
    • 2020
  • The purpose of this study was to provide planning criteria for the thalassotherapy facility. Among the various contents of the planning criteria, the crucial parts of the thalassotherapy facility planning are the location, facility environment, and room space. To do this, we first examined the characteristics of the thalassotherapy facility and inquired about the thalassotherapy resources and treatments that are the basis of the thalassotherapy facility planning. And then, the overseas qualification criteria related to thalassotherapy facility were analyzed. Based on the above research results, the criteria for the thalassotherapy facility planning on location, facility environment, and spaces of rooms are presented. The location is within 1km of the coastline, where there is no pollutant emission facility, and the climate conditions are maintained more than 80% throughout the year below 'caution' level of the thermal sensation index and sensory temperature. The water quality of the facility environment meets the stricter criteria among the domestic standards or ISO 17680 standards, and the air quality is 60% of the atmospheric environment standard of the 「Framework Act on Environmental Policy」 and SO2, NO2, O3 and PM10 concentration shall ensure that the annual number of exceeding standards meets the EU standard, and noise is less than 50dB per daytime, 40dB per night. Therapy spaces have to meet the standards of the 「Building Act」, the working standards of architectural planning and international standards according to their function and use.

Isolation and Optimization of Cultivating Conditions of Alkalophilic Strains for Biodegradation of Azo Dye (Azo 염료의 분해를 위한 호알카리성 균주의 분리 및 배양조건의 최적화)

  • Kim, Jeong-Mog;Chung, Hyun-Chae;Kwon, Oh-Jin
    • KSBB Journal
    • /
    • v.14 no.6
    • /
    • pp.718-723
    • /
    • 1999
  • In order to treat of alkaline dye-processing wastewater, alkalophilic strains biodegrading azo dye, Acid red 1, is isolated from natural system, and optimal culture conditions are examined using response surface analysis, statistical analysis system program. 15 different species which grow in alkaline culture media are isolated from the effluent and river soil discharged from wastewater treatment plant in dye industrial complex. One strain which has the best decolorization efficiency is chosen, and named as AR-1. The result of the examination of carbon, nitrogen and phosphorus sources which have influence on growth and decolorization reveals that optimum carbon, nitrogen and phosphorus sources are 1.0% fructose, 1.0% polypeptone, 1.0% yeast extract and 0.5% $K_2HPO_4$, respectively. In order to optimize of biodegradation conditions of dye by response surface analysis, the characteristics of decolorization and cell growth according to culture temperature and time are monitered. The result shows that the one is optimum 34.77$^{\circ}C$ for 12.97 hours; the other at 34.73$^{\circ}C$ for 12.96 hours. While, optimal conditions of culture that satisfy both cell growth and decolorization are the temperatures from 32.86$^{\circ}C$ to 36.36$^{\circ}C$ and the period of 10.96 to 15.75 hours, respectively.

  • PDF

Practical Study of Low-temperature Vacuum Swing Adsorption Process for VOCs Removal (휘발성 유기화합물 제거를 위한 저온 vacuum swing adsorption 공정의 실용화 연구)

  • Jeon, Mi-Jin;Pak, Seo-Hyun;Lee, Hyung-Don;Jeon, Yong-Woo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.3
    • /
    • pp.332-338
    • /
    • 2017
  • The objective of this work was to study the low temperature vacuum adsorption technology applicable to small and medium scale painting plants, which is the main emission source of volatile organic compounds. The low-temperature vacuum swing adsorption (VSA) technology is the way that the adsorbates are removed by reducing pressure at low temperature ($60{\sim}90^{\circ}C$) to compensate disadvantages of the existing thermal swing adsorption (TSA) technology. Commercial activated carbon was used and the absorption and desorption characteristics of toluene, a representative VOCs, were tested on a lab scale. Also based on the lab scale experimental results, a $30m^3min^{-1}$ VSA system was designed and applied to the actual painting factory to assess the applicability of the VSA system in the field. As a result of lab scale experiments, a 2 mm pellet type activated carbon showed higher toluene adsorption capacity than that of using 4 mm pellet type, and was used in a practical scale VSA system. Optimum conditions for desorption experiments were $80{\sim}90^{\circ}C$ and 100 torr. In the practical scale system, the adsorption/desorption cycles were repeated 95 times. As a result, VOCs discharged from the painting factory can be effectively removed upto 98% or more even after repeated adsorption/desorption cycles when using VSA technology indicating potential field applicabilities.

Estimation of Ammonia Stripping Condition for Adequate Aerobic Liquid-Composting of Swine Manure (돈분뇨의 적합한 호기성 액비화를 위한 암모니아 탈기조건 설정)

  • Son, Bo-Kyoon;Gang, Seong-Gu;Jo, Eun-Ju;Kim, Shin-Do;Lee, Chang-Ju;Kim, Jeong-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.2
    • /
    • pp.73-79
    • /
    • 2006
  • Aeration is the most important and indispensable operation unit for the treatment of swine manure using aerobic liquid-composting process. The composting of swine manure depends on biological treatment process, but the highly concentrated ammonia nitrogen is required a pretreatment to expect the appropriate efficiency of the biological treatment process. In this study, pilot experiments have been carried out to estimate of the fit condition about ammonia stripping process as a pretreatment to aerobic liquid- composting. pH adjustment with $Ca(OH)_2$ was economically superior to use of NaOH and optimum pH of ammonia stripping was 12.3, ammonia nitorgen was rapidly removed as pH were increased at $$35^{\circ}C$$. When air stripping is performed before aerobic liquid-stripping, a high initial pH is required for complete ammonia removal and is additional effects such as organic substances, phosphorus, turbidity, and color removal. Stripping process was very efficient in the pretreatment of highly concentrated ammonia nitrogen for composting of swine manure. Emission rate of gaseous ammonia was $0.5355mole\;s^{-1}$ at initial time and $0.0253mole\;s^{-1}$ at finitial time. The fit condition of ammonia stripping in this study were at the temperature of $$35^{\circ}C$$, and the pH of 12.3 during 48 hours.

Treatment of Radioactive Liquid Waste Using Natural Evaporator and Resulted Exposure Dose Assessment (증발을 이용한 방사성 액체폐기물의 처리와 피폭선량평가)

  • Jeong, Gyeong-Hwan;Park, Seung-Kook;Kim, Eun-Han;Jung, Ki-Jung;Park, Hyun-Soo
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.2
    • /
    • pp.101-108
    • /
    • 1999
  • The influence of the relative humidity, the temperature and the velocity of supply air on evaporation rate has been studied with non-boiling forced evaporation system in order to treat very low level radioactive liquid wastes produced from the decontamination and decommissioning activities. Experimental data on the evaporation rate have been obtained with the divers variables and experimental equation of air velocity was also obtained by the correlation of those data. The decontamination factor of this system was also obtained by the experimental data from a simulated liquid waste containing Cs-137 radio isotope ; $DF=10^4$. Since the commercial system will be operated for the treatment of the very low level radioactive liquid waste produced from decontamination & decommissioning of TRIGA Mark-II&III research reactor, the environmental assessment has been conducted to improve the operational safety. Exposure dose rate for an individual member of general public was assessed, and it showed that it was very lower than individual dose limits. The release of radioactivity of radioisotope material (Cs-137) to the environment was assessed, and result showed that it was $4.637{\times}10^{-14}\;{\mu}Ci/cc$.

  • PDF