• Title/Summary/Keyword: 배위

Search Result 389, Processing Time 0.024 seconds

Characteristics of Separation of Water/Bitumen Emulsion by Chemical Demulsifier (화학적 항유화제에 의한 물/비튜멘 에멀젼의 분리특성)

  • Park, Kuny-Ik;Han, Sam-Duck;Noh, Soon-Young;Bae, Wi-Sup;Rhee, Young-Woo
    • Clean Technology
    • /
    • v.15 no.1
    • /
    • pp.54-59
    • /
    • 2009
  • In this study, the separation of water/bitumen emulsion was investigated by chemical demulsification method. Motor oils (GS Caltex Deluxe Gold V 7.5W/30, Hyundai gear oil 85W/140) and asphalt (AP-5, KS M 2201, Dongnam Petrochemical MFG. Co.) were used as model oils in the preliminary experiments to effectively remove water from water/bitumen emulsion. The bitumen extracted from Canadian oilsands was used in this study. The water/oil emulsion was not separated without demulsifiers, and Hyundai motor oil showed higher efficiency of water separation at a low concentration of demulsifier compared with that for GS Caltex motor oil. However, as the concentration increased, the efficiency did not rapidly increase compared with that of GS Caltex motor oil. It was highly speculated that the water phase of Hyundai motor oil was not dispersed well compared with that of GS Caltex motor oil because the viscosity of Hyundai motor oil was much higher than that of GS Caltex motor oil. The demulsifier of higher HLB (hydrophilic - lipophilic balance) value had high separation efficiencies in water/oil emulsion. The TWEEN 20 (polyoxyethylene sorbitan monolaurate solution) showed better separation efficiency than other demulsifiers.

Quantum Chemical Calculations of the Effect of Si-O Bond Length on X-ray Raman Scattering Features for MgSiO3 Perovskite (양자화학계산을 이용한 Si-O 결합길이가 MgSiO3 페로브스카이트의 X-선 Raman 산란 스펙트럼에 미치는 영향에 대한 연구)

  • Yi, Yoo Soo;Lee, Sung Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.1-15
    • /
    • 2014
  • Probing the electronic structures of crystalline Mg-silicates at high pressure is essential for understanding the various macroscopic properties of mantle materials in Earth's interior. Quantum chemical calculations based on the density functional theory are used to explore the atomic configuration and electronic structures of Earth materials at high pressure. Here, we calculate the partial density of states (PDOS) and O K-edge energy-loss near-edge structure (ELNES) spectra for $MgSiO_3$ perovskite at 25 GPa and 120 GPa using the WIEN2k program based on the full-potential linearized projected augmented wave (FP-LPAW) method. The calculated PDOS and O K-edge ELNES spectra for $MgSiO_3$ Pv show significant pressure-induced changes in their characteristic spectral features and relative peak intensity. These changes in spectral features of $MgSiO_3$ Pv indicate that the pressure-induced changes in local atomic configuration around O atoms such as Si-O, O-O, and Mg-O length can induce the significant changes on the local electronic structures around O atoms. The result also indicates that the significant changes in O K-edge features can results from the topological densification at constant Si coordination number. This study can provide a unique opportunity to understand the atomistic origins of pressure-induced changes in local electronic structures of crystalline and amorphous $MgSiO_3$ at high pressure more systematically.

Differences in Structural Characteristics and Eu(III) Complexation for Molecular Size Fractionated Humic Acid (분자량별 분류에 따른 휴믹산의 구조적 특성 및 Eu(III)과의 착물 반응 특성 비교에 대한 연구)

  • Shin, Hyun-Sang;Rhee, Dong-Seok;Kang, Kihoon
    • Analytical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.159-166
    • /
    • 2001
  • A humic acid(HA, Aldrich Co) sample was subjected to ultrafiltration for molecular size fractionation and three fractions of different nominal size($F_1$: 1,000-10,000 daltons; $F_2$: 10,000-50,000 daltons; $F_3$: 100,000-300,000 daltons) were obtained. The structural characteristics of the size-fractionated HA were analyzed using their IR and solid state C-13 NMR spectral data, and the carboxylate group contents of the humic acids were determined using their pH titration data. The $^7F_0-{^5}D_0$ excitation spectra of Eu(III) complexes of the size-fractionated mgHA in aqueous solution were acquired($[Eu(III)]=1.0{\times}10^{-4}mol\;L^{-1}$, $(HA)=470-970mg\;L^{-1}$) at pH 5.0 using a pulsed tunable laser system, in which metal binding properties of the size-fractionated HA were elucidated and compared on another. Characterization of the IR and C-13 NMR spectral data indicated that the fraction($F_3$) with molecules of larger size were primarily aliphatic, while the fractions($F_1$, $F_2$) with smaller molecules of less than 50,000 daltons were predominantly aromatic. Titration data were consistent with an increase in the number of carboxylate groups per unit mass as molecular size became smaller. The $^7F_0-{^5}D_0$ excitation spectral data of Eu(III)-humate complexes showed that the peak maxima on these spectra were shifted toward lower energies with increasing molecular size of HA, indicating the higher degree of bindings of the Eu in the molecules of larger size. We also discussed the relationship of the lower energy shifts of the maximum peaks with increasing the molecular size of HA with the structural differences of the size-fractionated HA.

  • PDF

The Synthesis and MR Properties of New Macromolecular MR Contrast Agent (새로운 거대분자 MR 조영제의 합성 및 MR 특성에 관한 연구)

  • 장용민;장영환;황문정;박현정;전경녀;이종민;배경수;강봉석
    • Investigative Magnetic Resonance Imaging
    • /
    • v.6 no.1
    • /
    • pp.35-40
    • /
    • 2002
  • Purpose : To evaluate the NMR relaxation properties and imaging characteristics of tissue-specificity for a newly developed macromolecular MR agent. Materials and methods : Phthalocyanine (PC) was chelated with paramagnetic ion, Mn.2.01g (5.2 mmol) of Phthalocyanine was mixed with 0.37g (1.4 mmol) of Mn chloride at $310^{\circ}C$ for 36 hours and then purified by chromatography (CHC13/CH3OH 98/2 v/v, Rf, 0.76) to obtain 1.04g (46%) of MnPC (molecular weight= 2000d). The $T1}T2$ relaxivity of MnPC was measured in 1.5T(64 MHz) MR using 0.1 mM MnPC. The MR image characteristics of MnPC was evaluated using spin-echo (TR/TE=500/14 msec) and gradient-echo (FLASH) (TR/TE=80/4 msec, flip angle=60) techniques in 1.57 MR scanner. The images of rabbit liver were obtained every 10 minutes up to 4 hours. To study the effect of concentration on image, 20 mM, 50 mM, 100 mM of MnPC were tested. Results : The relaxivities of MnPC at 1.5T(64MHz) were Rl=7.28 $mM^{-1}S^{-1},{\;}R2=55.56mM^{-1}S^{-1}$. Compared to the values of Gd-DTPA (Rl[=4.8 $mM^{-1}S^{-1})$], R2[=5.2 $mM^{-1}S^{-1}])$]), both T1/T2 relaxivities of MnPC were higher than those of Gd-DTPA. For both of SE and FLASH techniques, the contrast enhancement reached maximum at 10 minutes after bolus injection and the enhancement continued for more than 2 hours. When compared with small molecular weight liver agents such as Gd-EOB-DTPA, Gd-BOPTA and MnDPDP, MnPC was characterized by more prolonged enhancement time. The time course of MR images also revealed biliary excretion of MnPC. Conclusion : We developed a new macromolecular MR agent, MnPC. The relaxivities of MnPC were higher than those of small molecular weight Gd-chelate. Hepatic uptake and biliary excretion of MnPC suggests that this agent is a new liver-specific MR agent.

  • PDF

Cobalt and Nickel Ferrocyanide-Functionalized Magnetic Adsorbents for the Removal of Radioactive Cesium (방사성 세슘 제거를 위한 코발트 혹은 니켈 페로시아나이드가 도입된 자성흡착제)

  • Hwang, Kyu Sun;Park, Chan Woo;Lee, Kune-Woo;Park, So-Jin;Yang, Hee-Man
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.1
    • /
    • pp.15-26
    • /
    • 2017
  • Cobalt ferrocyanide (CoFC) or nickel ferrocyanide (NiFC) magnetic nanoparticles (MNPs) were fabricated for efficient removal of radioactive cesium, followed by rapid magnetic separation of the absorbent from contaminated water. The $Fe_3O_4$ nanoparticles, synthesized using a co-precipitation method, were coated with succinic acid (SA) to immobilize the Co or Ni ions through metal coordination to carboxyl groups in the SA. CoFC or NiFC was subsequently formed on the surfaces of the MNPs as Co or Ni ions coordinated with the hexacyanoferrate ions. The CoFC-MNPs and NiFC-MNPs possess good saturation magnetization values ($43.2emu{\cdot}g^{-1}$ for the CoFC-MNPs, and $47.7emu{\cdot}g^{-1}$ for the NiFC-MNPs). The fabricated CoFC-MNPs and NiFC-MNPs were characterized by XRD, FT-IR, TEM, and DLS. The adsorption capability of the CoFC-MNPs and NiFC-MNPs in removing cesium ions from water was also investigated. Batch experiments revealed that the maximum adsorption capacity values were $15.63mg{\cdot}g^{-1}$ (CoFC-MNPs) and $12.11mg{\cdot}g^{-1}$ (NiFC-MNPs). Langmuir/Freundlich adsorption isotherm equations were used to fit the experimental data and evaluate the adsorption process. The CoFC-MNPs and NiFC-MNPs exhibited a removal efficiency exceeding 99.09% for radioactive cesium from $^{137}Cs$ solution ($18-21Bq{\cdot}g^{-1}$). The adsorbent selectively adsorbed $^{137}Cs$, even in the presence of competing cations.

Electronic Structure and Si L2,3-edge X-ray Raman Scattering Spectra for SiO2 Polymorphs: Insights from Quantum Chemical Calculations (양자화학계산을 이용한 SiO2 동질이상의 전자 구조와 Si L2,3-edge X-선 라만 산란 스펙트럼 분석)

  • Kim, Yong-Hyun;Yi, Yoo Soo;Lee, Sung Keun
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • The atomic structures of silicate liquids at high pressure provide insights into the transport properties including thermal conductivities or elemental partitioning behavior between rocks and magmas in Earth's interior. Whereas the local electronic structure around silicon may vary with the arrangement of the nearby oxygens, the detailed nature of such relationship remains to be established. Here, we explored the atomic origin of the pressure-induced changes in the electronic structure around silicon by calculating the partial electronic density of states and L3-edge X-ray absorption spectra of SiO2 polymorphs. The result showed that the Si PDOS at the conduction band varies with the crystal structure and local atomic environments. Particularly, d-orbital showed the distinct features at 108 and 130 eV upon the changes in the coordination number of Si. Calculated Si XAS spectra showed features due to the s,d-orbitals at the conduction band and varied similarly with those observed in s,d-orbitals upon changes in the crystal structures. The calculated Si XAS spectrum for α-quartz was analogous to the experimental Si XRS spectrum for SiO2 glass, implying the overall similarities in the local atomic environments around the Si. The edge energies at the center of gravity of XAS spectra were closely related to the Si-O distance, thus showing the systematic changes upon densification. Current results suggest that the Si L2,3-edge XRS, sensitive probe of the Si-O distance, would be useful in unveiling the densification mechanism of silicate glasses and melts at high pressure.

Petrological Characteristics of Two-Mica Granites : Examples from Cheongsan, Inje-Hongcheon, Yeongju and Namwon areas (복운모 화강암의 암석화학적 특징 : 청산, 인제-홍천, 영주 및 남원지역의 예)

  • 좌용주
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.210-225
    • /
    • 1997
  • From their general natures of peraluminous, S-type and ilmenite-series granites, two-mica granites in the Cheongsan, Inje-Hongcheon, Yeongju and Namwon areas were originated from crust-derived granitic magma and solidified under reducing condition. Each two-mica granite in Inje-Hongcheon and Namwon districts was differentiated from the the residual magma of porphyric biotite granite and high Ti/Mg biotite granite, respectively. The genetic relationships between two-mica granite and porphyritic biotite granite in Chenongsan district and between two-mica granite and biotite granodiorite in Yeongju district are ambiguous. In Namwon district granitic magmas were water-saturated and possible water solubilities in magmas were more than 5.8wt.%. In Yeongju district two-mica granitic magma was nearly water-saturated and showed possible water solubilities between 2.4~5.8wt.%. Two-mica granitic magmas in Cheongsan and Inje-Hongcheon districts were water-undersaturated. Pressure-dependent minimum melt compositions (0.5~2kb) and petrographic textures of two-mica granites in Inje-Hongcheon and Yeongju districts represent that the granites intruded and solidified at shallow level, whereas those in Cheongsan and Namwon districts exhibit relatively deeper level of granitic intrusion (2-3kb). The intersection of granite-solidus/muscovite stability indicates that magmatic primary muscovite can be crystallized from the water-saturated magma above 1.6kb (ca. 6km), but below the pressure muscovite can be formed by the subsolidus reaction. On the other hand, more pressure would be necessary for the crystallization of primary muscovite from the water-undersaturated magma. This pressure condition can explain the occurrence of primary and secondary muscovites from the two-mica granites in the areas considered. The experimental muscovite stability must be cautious of the application to examine the origin of muscovite. The muscovite stability can move toward high temperature field with adding of Ti, Fe and Mg components to the octahedral site of pure muscovite end member.

  • PDF

Sorption of Arsenite Using Nanosized Mackinawite (FeS)-Coated Silica Sand (나노 크기 매킨나와이트로 코팅된 규사를 이용한 아비산염의 흡착)

  • Lee, Seungyeol;Kang, Jung Chun;Park, Minji;Yang, Kyounghee;Jeong, Hoon Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.185-195
    • /
    • 2012
  • Due to the high reduction and sorption capacity as well as the large specific surface area, nanosized mackinawite (FeS) is useful in reductively transforming chlorinated organic pollutants and sequestering toxic metals and metalloids. Due to the dynamic nature in its colloid stability, however, nanosized FeS may be washed out with the groundwater flow or result in aquifer clogging via particle aggregation. Thus, these nanoparticles should be modified such as to be built into permeable reactive barriers. This study employed coating methods in efforts to facilitate the installation of permeable reactive barriers of nanosized mackinawite. In applying the methods, nanosized mackinawite was coated on non-treated silica sand (NTS) and chemically treated silica sand (CTS). For both silica sands, the maximum coating of mackinawite occurred around pH 5.4, the condition of which was governed by (1) the solubility of mackinawite and (2) the surface charge of both silica and mackinawite. Under this pH condition, the maximum coating by NTS and CTS were found to be 0.101 mmol FeS/g and 0.043 mmol FeS/g respectively, with such elevated coatings by NTS likely linked with impurities (e.g., iron oxides) on its surface. Arsenite sorption experiments were performed under anoxic conditions using uncoated silica sands and those coated with mackinawite at the optimal pH to compare their reactivity. At pH 7, the relative sorption efficiency between uncoated NTS and coated NTS changed with the initial concentration of arsenite. At the lower initial concentration, uncoated NTS showed the higher sorption efficiency, whereas at the higher concentration, coated NTS exhibited the higher sorption efficiency. This could be attributed to different sorption mechanisms as a function of arsenite concentration: the surface complexation of arsenite with the iron oxide impurity on silica sand at the low concentration and the precipitation as arsenic sulfides by reaction with mackinawite coating at the high concentration. Compared to coated NTS, coated CTS showed the lower arsenite removal at pH 7 due to its relatively lower mackinawite coating. Taken together, our results indicate that NTS is a more effective material than CTS for the coating of nanosized mackinawite.

Spectroscopic Studies on U(VI) Complex with 2,6-Dihydroxybenzoic acid as a Model Ligand of Humic Acid (분광학을 이용한 흄산의 모델 리간드인 2,6-Dihydroxybenzoic acid와 우라늄(VI)의 착물형성 반응에 관한 연구)

  • Cha, Wan-Sik;Cho, Hye-Ryun;Jung, Euo-Chang
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.4
    • /
    • pp.207-217
    • /
    • 2011
  • In this study the complex formation reactions between uranium(VI) and 2,6-dihydroxybenzoate (DHB) as a model ligand of humic acid were investigated by using UV-Vis spectrophotometry and time-resolved laser-induced fluorescence spectroscopy (TRLFS). The analysis of the spectrophotometric data, i.e., absorbance changes at the characteristic charge-transfer bands of the U(VI)-DHB complex, indicates that both 1:1 and 1:2 (U(VI):DHB) complexes occur as a result of dual equilibria and their distribution varies in a pH-dependent manner. The stepwise stability constants determined (log $K_1$ and log $K_2$) are $12.4{\pm}0.1$ and $11.4{\pm}0.1$. Further, the TRLFS study shows that DHB plays a role as a fluorescence quencher of U(VI) species. The presence of both a dynamic and static quenching process was identified for all U(VI) species examined, i.e., ${UO_2}^{2+}$, $(UO_2)_2{(OH)_2}^{2+}$, and $(UO_2)_3{(OH)_5}^+$. The fluorescence intensity and lifetimes of each species were measured from the time-resolved spectra at various ligand concentrations, and then analyzed based on Stern-Volmer equations. The static quenching constants (log $K_s$) obtained are $4.2{\pm}0.1$, $4.3{\pm}0.1$, and $4.34{\pm}0.08$ for ${UO_2}^{2+}$, $(UO_2)_2{(OH)_2}^{2+}$, and $(UO_2)_3{(OH)_5}^+$, respectively. The results of Stern-Volmer analysis suggest that both mono- and bi-dentate U(VI)-DHB complexes serve as groundstate complexes inducing static quenching.

X-ray Absorption Spectroscopy Study on Surface Interaction of Arsenite onto Two-Line Ferrihydrite at pHs 4 and 10 (pH 4와 10에서의 3가 비소와 Two-Line Ferrihydrite의 표면반응에 대한 X선 흡수 분광 연구)

  • Lee, Woo-Chun;Choi, Sun-Hee;Cho, Hyen-Goo;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.73-82
    • /
    • 2011
  • X-ray absorption spectroscopy (XAS) study was conducted using arsenite-sorbed two-line ferrihydrite to investigate the mechanism of surface interactions between two-line ferrihydrite and As(III) (arsenite) which are ubiquitous in nature. The two-line ferrihydrite used was synthesized in the laboratory and the study was undertaken at pHs 4 and 10 to compare the difference in mechanisms of surface interaction between acidic and alkaline environments. The effect of arsenite-adsorbed concentrations on surface complexation was investigated at each pH condition as well. From the results of XAS analyses, the structural parameters of arsenite in the EXAFS revealed that the coordination number and distanceof As-O were 3.1~3.3 and 1.74~1.79 ${\AA}$, respectively, which indicate that the unit structure of arsenite complex formed on the surface of two-line ferrihydrite is $AsO_3$. The dominant structures of As(III)-Fe complex were examined to be bidentate binuclear comer-sharing ($^2C$) and the mixture of bidentate mononuclear edge sharing ($^2E$) and $^2C$ appeared as well. At pH 4, arsenite complex showed different structures on the surface of two-line ferrihydrite, depending on the adsorbed concentrations. At pH 10, on the contrary, the surface structures of arsenite complexes were interpreted to be almost identical, irrespective of the adsorbed concentrations of arsenite. Consequently, this microscopic XAS results support the results of macroscopic adsorption experiments in which the surface interaction between arsenite and two-line ferrihydrite is significantly influenced by pH conditions as well as arsenite concentrations.