DOI QR코드

DOI QR Code

X-ray Absorption Spectroscopy Study on Surface Interaction of Arsenite onto Two-Line Ferrihydrite at pHs 4 and 10

pH 4와 10에서의 3가 비소와 Two-Line Ferrihydrite의 표면반응에 대한 X선 흡수 분광 연구

  • Lee, Woo-Chun (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Choi, Sun-Hee (Pohang Accelerator Laboratory (PAL)) ;
  • Cho, Hyen-Goo (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Kim, Soon-Oh (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University)
  • 이우춘 (경상대학교 자연과학대학 지구환경과학과 및 기초과학연구소) ;
  • 최선희 (포항가속기 연구소) ;
  • 조현구 (경상대학교 자연과학대학 지구환경과학과 및 기초과학연구소) ;
  • 김순오 (경상대학교 자연과학대학 지구환경과학과 및 기초과학연구소)
  • Received : 2011.05.20
  • Accepted : 2011.06.27
  • Published : 2011.06.30

Abstract

X-ray absorption spectroscopy (XAS) study was conducted using arsenite-sorbed two-line ferrihydrite to investigate the mechanism of surface interactions between two-line ferrihydrite and As(III) (arsenite) which are ubiquitous in nature. The two-line ferrihydrite used was synthesized in the laboratory and the study was undertaken at pHs 4 and 10 to compare the difference in mechanisms of surface interaction between acidic and alkaline environments. The effect of arsenite-adsorbed concentrations on surface complexation was investigated at each pH condition as well. From the results of XAS analyses, the structural parameters of arsenite in the EXAFS revealed that the coordination number and distanceof As-O were 3.1~3.3 and 1.74~1.79 ${\AA}$, respectively, which indicate that the unit structure of arsenite complex formed on the surface of two-line ferrihydrite is $AsO_3$. The dominant structures of As(III)-Fe complex were examined to be bidentate binuclear comer-sharing ($^2C$) and the mixture of bidentate mononuclear edge sharing ($^2E$) and $^2C$ appeared as well. At pH 4, arsenite complex showed different structures on the surface of two-line ferrihydrite, depending on the adsorbed concentrations. At pH 10, on the contrary, the surface structures of arsenite complexes were interpreted to be almost identical, irrespective of the adsorbed concentrations of arsenite. Consequently, this microscopic XAS results support the results of macroscopic adsorption experiments in which the surface interaction between arsenite and two-line ferrihydrite is significantly influenced by pH conditions as well as arsenite concentrations.

본 연구에서는 자연에서 산출빈도가 높은 3가 비소(아비산염)와 two-line ferrihydrite와의 표면흡착반응의 기작을 살펴보기 위하여 3가 비소를 흡착시킨 two-line ferrihydrite에 대한 X선 흡수분광 분석을 수행하였다 연구에 사용된 two-line ferrihydrite는 실험실에서 합성하여 사용하였으며, 산성과 염기성 환경에서의 표면반응 기작을 비교하기 위하여 pH 4와 10에서 연구를 수행하였다. 또한 각 pH 조건별 3가 비소의 흡착농도에 따른 표면반응의 차이를 비교 평가하였다. X선 흡수분광 분석결과에서 얻은 EXAFS 영역에서의 비소 3가에 대한 구조 변수들을 살펴보면 As-O 배위수는 3.1~3.3개 거리는 1.74~1.79 ${\AA}$으로 two-line ferrihydrite 표면에 흡착된 As(III) complex의 구조 단위체가 $AsO_3$임이 확인되었다. As(III)-Fe쌍은 주로 안정된 형태의 bidentate binuclear comer-sharing ($^2C$)의 결합구조를 갖는 것으로 나타났으며, bidentate mononuclear edge-sharing ($^2E$)와 $^2C$가 혼합된 결합구조도 공존하는 것으로 조사되었다. pH 4에서는 흡착농도에 따라 다른 표면구조를 가지는 반면, pH 10에서는 흡착 농도에 상관없이 동일한 표면구조를 보이는 것으로 나타났다. 이러한 결과는 3가 비소와 two-line ferrihydrite의 표면반응은 pH와 농도에 의해서 영향을 받는다는 거시적인(macroscopic) 흡착실험 연구결과가 미시적인(microscopic) X선 흡수분광 결과에 의해서 해석될 수 있음을 의미한다.

Keywords

References

  1. 고경석, 오인숙, 김재곤, 안주성, 김형수, 석희준 (2006) 황산염처리 산화철피복모래의 비소 흡착능 평가 연구. 2006년 자원환경지질학회 춘계 학술발표회(초록), 제주도 4월 19일, 445-448.
  2. 고일원, 이상우, 김주용, 김경웅, 이철효 (2004) 나노 크기 적철석 입자 피복 모래를 이용한 비소 3가와 비소 5가의 제거. 지하수토양환경, 9, 63-69.
  3. 고일원 김주용, 김경웅, 안주성 (2005) 비소의 적철석 표면 흡착에 토양 유기물이 미치는 영향: 화학종 모델링 과 흡착 기작. 자원환경지질, 38, 23-31.
  4. 김순오, 정영일, 조현구, 최선희, 이현휘 (2007) 비소와 영가철 및 철(수)산화물과의 표면반응에 대한 X선 흡 수분광 예비연구. 2007년 한국광물학회․한국암석학 회 공동학술발표회(초록), 안동대학교 5월 31일, 131-134.
  5. 김순오, 이우춘, 정현수, 조현구 (2009) 침철석(goethite)과 비소의 흡착반응. 한국광물학회지, 22, 177-189.
  6. 이우춘, 정현수, 김주용, 김순오 (2009) 레피도크로사이트(lepidocrocite) 표면의 비소 흡착 특성 규명. 자원환경지질, 42, 95-105.
  7. 정영일, 김인선, 김순오 (2006) 영가철을 이용한 광미 용출액으로부터 비소 제거에 관한 연구. 2006년 대한지질학회 추계학술회(초록), 한국지질자원연구원 10월 26일, 149
  8. 정영일, 김순오, 김인선, 조현구 (2007) Long-term evaluation of the feasibility of zerovalent iron for the removal of arsenic and heavy metals from tailingleachate. 2007년 춘계 지질과학기술 공동학술대회(초록), 경주 4월 25일, 382-384.
  9. 정영일, 이우춘, 조현구, 윤성택, 김순오 (2008) 비소의 two-line ferrihydrite에 대한 흡착반응. 한국광물학회지, 21, 227-237.
  10. 정현수, 이우춘, 조현구, 김순오 (2008) 자철석의 비소에 대한 흡착특성 연구. 한국광물학회지, 21, 425-434.
  11. Ankudinov, A.L., Ravel, B., Rehr, J.J., and Conradson, S.D. (1998) Real space multiple scattering calculation and interpretation of X-ray absorption near edge structure. Phys. Rev. B., 58, 7565-7576. https://doi.org/10.1103/PhysRevB.58.7565
  12. Dixit, S. and Hering, J.G. (2003) Comparison of arsenic (V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ. Sci. Technol., 37, 4182-4189. https://doi.org/10.1021/es030309t
  13. Farquhar, M.L., Charnock, J.M., Livens, F.R., and Vaughan, D.J. (2002) Mechanisms of arsenic uptake from aqueous solution by interaction with goethite, lepidocrocite, mackinawitee, and pyrite: An X-ray absorption spectroscopy study. Environ. Sci. Technol. 36, 1757-1762. https://doi.org/10.1021/es010216g
  14. Fuller, C.C., Davis, J.A., and Waychunas, G.A. (1993) Surface chemistry of ferrihydrite: Part 2. Kinetics of arsenate adsorption and coprecipitation. Geochim. Cosmochim. Acta, 57, 2271-2282. https://doi.org/10.1016/0016-7037(93)90568-H
  15. Jung, Y.I., Cho, H.G., Kim, I.S., and Kim, S.O. (2007) Application of zerovalent iron for the removal of arsenic from leachate of tailing. The 60th anniversary of geological society of Korea (Abstracts for the international symposium on global environmental change), Seoul April 12-13, 52p.
  16. Jung, Y.I., Lee, W.C., Cho, H.G., Yun, S.T., and Kim, S.O. (2008) Adsorption of arsenic onto two-line ferrihydrite. J. Miner. Soc. Korea, 21, 227-237.
  17. Kim, S.O., Jung, Y.I., Cho, H.G. Park, W.J., and Kim, I.S. (2007) Removal of arsenic from leachate of tailing using laboratory-synthesized zerovalent iron. J. Applied and Biological Chemistry, 50, 6-12.
  18. Manceau, A. (1995) The mechanism of anion adsorption on iron oxides: Evidence for the bonding of arsenate tetrahedral on free ${Fe(O, OH)}_6$ edges. Geochim. Cosmochim. Acta, 59, 3647-3653. https://doi.org/10.1016/0016-7037(95)00275-5
  19. Manning, B.A., Hunt, M.L., Amrhein, C., and Yarmoff, J.A. (2002) Arsenic(III) and arsenic(V) reactions with zerovalent iron corrosion products. Environ. Sci. Technol., 36, 5455-5461. https://doi.org/10.1021/es0206846
  20. Masue, Y., Loeppert, R.H., and Kramer, T.A. (2007) Arsenate and arsenite adsorption and desorption behavior on coprecipitated aluminum:iron hydroxides. Environ. Sci. Technol., 41, 837-842. https://doi.org/10.1021/es061160z
  21. Morin, G., Ona-Nguema, G., Wang, Y., Menguy, N., Juillot, F., Proux, O., Guyot, F., Calas, G., and Brown Jr., G.E. (2008) Extended x-ray absorption fine structure analysis of arsenite and arsenate adsorption on maghemite. Environ. Sci. Technol. 42, 2361-2366. https://doi.org/10.1021/es072057s
  22. Ona-Nguema, G., Morin, G., Juillot, F., Calas, G., and Brown Jr., G.E. (2005) EXAFS analysis of arsenite adsorption onto two-line ferrihydrite, hematite, goethite, and lepidocrocite. Environ. Sci. Technol., 39, 9147-9155. https://doi.org/10.1021/es050889p
  23. Ravel, B. and Newville, M. (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 12, 537-541. https://doi.org/10.1107/S0909049505012719
  24. Raven, K.P., Jain, A., and Loeppert, R.H. (1998) Arsenite and arsenate adsorption on ferrihydrite: Kinetics, equilibrium, and adsorption envelopes. Environ. Sci. Technol., 32, 344-349. https://doi.org/10.1021/es970421p
  25. Schwertmann U. and Cornell R.M. (2000) Iron oxides in the laboratory: preparation and characterization. Wiley-VCH Publishers, New York, USA. 103-112.
  26. Sherman, D.M. and Randall, S.R. (2003) Surface complexaton of arsenic(V) to iron(III) (hydr)oxides: Structural mechanism from ab initio molecular geometries and EXAFS spectroscopy. Geochim. Cosmochim. Acta, 67, 4223-4230. https://doi.org/10.1016/S0016-7037(03)00237-0
  27. Waychunas, G.A., Rea, B.A., Fuller, C.C., and Davis, J.A. (1993) Surface chemistry of ferrihydrite: Part I. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate. Geochim. Cosmochim. Acta 57, 2251-2269. https://doi.org/10.1016/0016-7037(93)90567-G
  28. Wilkie, J.A. and Hering, J.G. (1996) Adsorption of arsenic onto hydrous ferric oxide: effects of adsorbate/adsorbent ratios and co-occurring solutes. Colloid Surface A, 107, 97-110. https://doi.org/10.1016/0927-7757(95)03368-8

Cited by

  1. Characterization of Arsenic Sorption on Manganese Slag vol.26, pp.4, 2013, https://doi.org/10.9727/jmsk.2013.26.4.229
  2. Removal of Aqueous Arsenic Via Adsorption onto Si Slag vol.46, pp.6, 2013, https://doi.org/10.9719/EEG.2013.46.6.521
  3. Characterization of Arsenic Adsorption onto Hematite vol.25, pp.4, 2012, https://doi.org/10.9727/jmsk.2012.25.4.197
  4. 달성광산 산성광산배수 침전물에 대한 As, Cu, Cd 흡착 특성 연구 vol.30, pp.4, 2011, https://doi.org/10.9727/jmsk.2017.30.4.195
  5. Beam-induced redox transformation of arsenic during AsK-edge XAS measurements: availability of reducing or oxidizing agents and As speciation vol.25, pp.3, 2011, https://doi.org/10.1107/s1600577518002576