DOI QR코드

DOI QR Code

Transformation of Schwertmannite to Goethite and Related Behavior of Heavy Metals

슈베르트마나이트-침철석 전이 및 이와 관련된 중금속의 거동

  • 김헌정 (경북대학교 자연과학대학 지질학과) ;
  • 김영규 (경북대학교 자연과학대학 지질학과)
  • Received : 2011.04.29
  • Accepted : 2011.06.27
  • Published : 2011.06.30

Abstract

The mineral phases precipitated in the swamp built for the treatment of the mine drainage of the Dalsung Mine were investigated to reveal the mineralogical changes from schwertmannite to goethite and related behavior of heavy metals. Our XRD results show that most schwertmannite were transformed to goethite except the small portions of the samples in the uppermost part. No significant morphological changes were observed in the samples during mineral transformation by SEM, indicating that this transformation process occurred not from dissolution-precipitation process, but in solid state. Among heavy metals sorbed or coprecipitated in the mineral phases, Pb and Cu concentrations were relatively higher compared with their concentrations in the mine drainage. The relative concentrations of other heavy metals show similar values. The heavy metal concentration in the minerals do not show noticeable differences from uppermost schwertmannite to lower goethite samples, indicating the transformation process without any leaching or additional sorption of heavy metals in the solid state.

슈베르트마나이트로부터 침철석으로의 전이 시 일어나는 광물학적 변화 및 이와 연관된 중금속의 거동을 알아보기 위하여 달성광산의 광산배수 정화시설 소택지에 침전된 침전물을 대상으로 광물학적 연구와 지구화학적 연구를 수행하였다. XRD 연구결과 초기에 광산배수로부터 침전된 슈베르트마나이트는 대부분 침철석으로 전이되어 상부 일부에서만 슈베르트마나이트가 관찰되었다. SEM으로 광물 전이에 따른 외부형태 변화를 관찰한 결과 눈에 띄는 변화가 없는 것으로 보아 광물전이는 용해-챔전의 과정보다는 고체상에서의 전이가 있었음을 알 수 있었다. 슈베르트마나이트와 침철석에 흡착 또는 공침된 중금속들 중 Pb와 Cu의 경우 광산배수의 중금속 농도에 비교하여 상대적으로 높은 농도를 보였으며 나머지 중금속들은 상대적인 양에 있어서 비슷한 값을 보였다. 상부 슈베르트마나이트에서 하부의 침철석으로 전이가 일어나면서 광물 내 함유된 중금속의 함량은 일부 시료를 제외하고 전체적으로 눈에 띄는 변화를 보이지 않았으며 이는 슈베르트마나이트에서 침철석으로 전이되는 과정에서 고체 상태에서 전이가 일어나면서 추가적인 중금속의 용출이나 흡착이 없었음을 지시한다.

Keywords

References

  1. 금교진, 정은하, 김영규 (2010) 슈베르트마나이트의 $AsO_4$, $SeO_3$, $CrO_4$ 흡착 및 열적 특성. 한국광물학회지, 23, 117-124.
  2. 이지은, 김영규, 추창오 (2003) 달성 폐광산의 침출수 및 갱내 유출수의 수리지구화학적 특성과 비교. 지질학회지, 39, 519-533.
  3. Acero, P., Ayora C., Torrento, C., and Nieto, J.M. (2006) The behavior of trace elements during schwertmannite precipitation and subsequent transformation into goethite and jarosite. Geochim. Cosmochim. Acta, 70, 4130-4139. https://doi.org/10.1016/j.gca.2006.06.1367
  4. Achterberg, E.P., Herzl, V.M.C., Braungardt, C.B., and Millward, G.E. (2003) Metal behavior in an estuary polluted by acid mine drainage: the role of particulate matter. Environ. Pollut. 121, 283-292. https://doi.org/10.1016/S0269-7491(02)00216-6
  5. Bigham, J.M., Carlson. L., and Murad. E. (1994) Schwertmannite, a new iron oxyhydroxysulfate from Pyhsalmi, Finland, and other localities. Mineral. Mag. 58, 641-648. https://doi.org/10.1180/minmag.1994.058.393.14
  6. Bigham, J.M., Schwertmann, U., Traina, S.J., Winland, R.L., and Wolf, M. (1996) Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochim. Cosmochim. Acta, 60, 2111-2121. https://doi.org/10.1016/0016-7037(96)00091-9
  7. Blodau, C. (2004) Evidence for a hydrologically controlled iron cycle in acidic and iron rich sediments. Aquat. Sci., 66, 47-59 https://doi.org/10.1007/s00027-003-0689-y
  8. Burton, E.D., Bush, R.T., Sullicvan, L.A., and Mitchell, D.R.G. (2008) Schwertmannite transformation to geothite vis the Fe(II) pathway: Reaction rates and implicaton s for iron-sulfide formation. Geochim. Cosmochim. Acta, 71, 4551-4564.
  9. Cornell, R.M. and Schwertman, U. (1996) The iron oxides. VCH.
  10. Fukushi K., Sato, T., and Yanase, N. (2003) Solidsolution reaction in As(V) sorption by schwertmannite. Environ. Sci. Technol., 37, 3581-3586. https://doi.org/10.1021/es026427i
  11. Fukushi K., Sato, T., Yanase, N., Minato, J., and Yamada, H. (2004) Arsenate sorption on schwertmannite. Am. Miner., 89, 1728-1734. https://doi.org/10.2138/am-2004-11-1219
  12. Gagliano, W.B., Brill, M.R., Bigham, J.M., Jones, F.S., and Traina, S.J., (2004) Chemistry and mineralogy of ochreous sediments in a constructed mine drainage wetland. Geochim. Cosmochim. Acta, 68, 2119-2128. https://doi.org/10.1016/j.gca.2003.10.038
  13. Janney, D.E., Colwy, J.M., and Buseck, P.R. (2000) Transmission electron microscopy of synthetic 2- and 6-line ferrihydrite. Clays Clay Miner., 23, 310-317.
  14. Jonsson, J., Persson, P., Sjoberg, S., and Lovgren, L. (2005) Schwertmannite precipitated from acid mine drainage: phase transformation, sulphate release and surface properties. Appl. Geochem., 20, 179-191. https://doi.org/10.1016/j.apgeochem.2004.04.008
  15. Kim, J.J., Kim, S.J., and Tazaki, K. (2002) Mineralogical characterization of microbioal ferrihydrite and schwertmannite, and non-biogenic Al-sulfate precipitates from acid mine drainage in the Donghae mine area, Korea. Environ. Geol., 42, 19-31. https://doi.org/10.1007/s00254-002-0530-2
  16. Kuesel, K. (2003) Microbial cycling of iron and sulfur in acidic coal mining lake sediments. Water Air Soil Pollut. Focus, 3, 67-90.
  17. Lee, J.E. and Kim, Y. (2008) A quantitative estimation of facotors affecting pH changes using simple geochemical data from acid mine drainage. Envrion. Geol., 55, 65-75. https://doi.org/10.1007/s00254-007-0965-6
  18. Loan, M. Cowley, J.M., Hart, R., and Parkinson, G.M. (2004) Evidence on the structure of syntehtic schwertmannite. Am. Miner., 89, 1735-1742. https://doi.org/10.2138/am-2004-11-1220
  19. Peine A., Tritschler A., Kusel K., and Peiffer S. (2000) Electron flow in an iron-rich acidic sediment-evidence for an acidity-driven iron cycle. Limnol. Oceanogr., 45, 1077-1087. https://doi.org/10.4319/lo.2000.45.5.1077
  20. Regenspurg, S., Brand, A., and Peiffer, S. (2004) Formation and stability of schwertmannite in acidic mining lakes. Geochim. Cosmochim. Acta, 68, 1185-1197. https://doi.org/10.1016/j.gca.2003.07.015
  21. Schroth, A.W. and Parnell, R.A. (2005) Trace metal retention through the schwertmannite to goethite transformation as observed in a field setting, Alta Mine, MT. Appl. Geochem., 20, 907-917. https://doi.org/10.1016/j.apgeochem.2004.09.020
  22. Sidenko, N.V. and Sherriff, B.L. (2005) The attenuation of Ni, Zn and Cu, by secondary Fe phases of different crystallinity from surface and ground water of two sulfide mine tailings in Manitoba, Canada. Appl. Geochem., 20, 1180-1194. https://doi.org/10.1016/j.apgeochem.2005.01.012