• Title/Summary/Keyword: 배열 이득

Search Result 329, Processing Time 0.027 seconds

The Development of HILS and Test Equipment for Millimeter-Wave (Ka-Band) Seeker's Test and Evaluation (밀리미터파 탐색기 시험 평가를 위한 HILS 및 시험 장비 개발)

  • Song, Sung-Chan;Na, Young-Jin;Yoon, Tae-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.1
    • /
    • pp.47-55
    • /
    • 2012
  • This paper describes the developed HILS and test equipment in order to test the performances of MMW(Millimeter-Wave) seeker which can detect and track a high speed of short-range ballistic missile and aircraft. This system is used to 141 horn antenna array, array switching, and gain and phase control algorithm to simulate various kind of targets and trajectory of high speed and maneuver moving target. In addition, it simulates not only velocity and range for these targets but also clutter and jamming environments. System configuration and implementation and the measurement results of major subsystems such as target motion simulator, simulation signal generator, high speed data aquisition unit, and central control unit are presented. These systems could verify the detection and tracking performance of MMW seeker through dynamic real-time test based on simulation flight scenario.

Asynchronous Multiuser Receivers with Antenna Arrays in Trellis Coded DS/CDMA Channels (격자부호화 직접수열 부호분할 다중접속 채널에서 안테나 배열을 쓴 비동기 여러쓰는이 수신기)

  • Kim, Kwang-Soon;Lee, Joo-Shik;Kim, Yun-Hee;Park, So-Ryoung;Yoon, Seok-Ho;Song, Iick-Ho
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.10
    • /
    • pp.10-20
    • /
    • 1999
  • In this paper, we propose and analyze a multiuser receiver using a decorrelating filter and Viterbi decoders for trellis coded DS/CDMA systems with biorthgonal signal constellation in asynchronous channels. The biorthogonality is implemented by user signature waveforms and the decorrelating filter. The performance of the proposed system is investigated with emphasis on the asymptotic cases. It is shown that the proposed system can provide us with some coding gain and near-far resistance. We also analyze the performance of the proposed system with base-station antenna array.

  • PDF

Four-Elements L-Shaped Slot Array Monopole Antenna with Dipole-like Radiation Pattern (다이폴형 방사 패턴을 갖는 4소자 L-슬롯 배열 모노폴 안테나)

  • Nam, Sung-Soo;Lee, Hong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.3
    • /
    • pp.273-279
    • /
    • 2009
  • In this paper, an antenna which has dipole-like radiation pattern and low profile is proposed. The antenna is composed of four elements slot array based on L-shaped 0.43 $\lambda_g$ slot element. It presents a omni-directional radiation patter in the azimuth plane and has a null toward broad-side direction. In the design, a small mono-pole antenna which acts as a large capacitance element, combined with the partially removed ground plane by four L-shaped slots. As a result, these structure act as a LC resonator for radiation. The measured result shows, the impedance bandwidth(VSWR$\leq$2) of the proposed antenna is 60 MHz(2.35$\sim$2.41 GHz). The measured maximum radiation gain and efficiency of proposed antenna is 0.02 dBi, 56.7 % at center frequency 2.38 GHz, respectively. The proposed antenna can be applied to wireless tan access point system.

A Study on Unmanned Vehicles Estimation using Steepest Descent, Wiener and Bartlett Algorithm (최급 하강법 및 위너 방법을 Bartlett알고리즘에 적용한 무인 이동체 탐지 방법에 대한 연구)

  • Lee, Kwan-Hyeong;Song, Woo-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.2
    • /
    • pp.154-160
    • /
    • 2017
  • In this paper, we studied the Bartlett method to correctly estimate the targets of a unmanned vehicles. The Bartlett method estimates the desired signals by making the gain constant for the received signal incident on the array antenna. In this paper, the weights of the Bartlett method are updated by applying the winner method and steepest descent method in order to estimation the accurate unmanned. The updated weights improve the resolution of the existing Bartlett method by applying optimal weights to all received signals received at the array antenna. Through simulation, we are comparative analysis about the performance of proposed method. From result of simulation, We showed the superior performance of the proposed method relative to the classical method, and Bartlett using steep descent method showed more superior than one using wiener method.

Numerical Study on Heat Transfer and Flow Characteristics of Pin Fin with Swept Airfoil Shape Vortex Generator (후퇴익형 형상의 와류발생기가 있는 핀휜 유동의 전열 및 유동 특성 분석에 관한 수치적 연구)

  • Lee, Changhyeong;Oh, Yeongtaek;Bae, Jihwan;Lee, Deukho;Kim, Kuisoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.4
    • /
    • pp.28-34
    • /
    • 2019
  • In this study, pin-fin arrays, which are widely used for cooling turbine blades, were studied. The vortex generator in pin-fin arrays is located in front of the circular tube. The cross-section of the vortex generator is NACA-9410. The purpose of this study is to analyze heat transfer performance and flow characteristics of pin-fin arrays. The position of vortex generator is changed with the vertical flow direction on the bottom wall. Pin-fin arrays were calculated with 6000, 10000 and 15000 Reynolds number. The commercial program ANSYS v18.0 CFX and the turbulence model $k-{\omega}$ SST were used. As a result, the heat transfer performance increased up to 5.8% and pressure loss increased less than 1%.

Development and Performance Compensation of the Extremely Stable Transceiver System for High Resolution Wideband Active Phased Array Synthetic Aperture Radar (고해상도 능동 위상 배열 영상 레이더를 위한 고안정 송수신 시스템 개발 및 성능 보정 연구)

  • Sung, Jin-Bong;Kim, Se-Young;Lee, Jong-Hwan;Jeon, Byeong-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.573-582
    • /
    • 2010
  • In this paper, X-band transceiver for high resolution wideband SAR systems is designed and fabricated. Also as a technique for enhancing the performance, error compensation algorithm is presented. The transceiver for SAR system is composed of transmitter, receiver, switch matrix and frequency generator. The receiver especially has 2 channel mono-pulse structure for ground moving target indication. The transceiver is able to provide the deramping signal for high resolution mode and select the receive bandwidth for receiving according to the operation mode. The transceiver had over 300 MHz bandwidth in X-band and 13.3 dBm output power which is appropriate to drive the T/R module. The receiver gain and noise figure was 39 dB and 3.96 dB respectively. The receive dynamic range was 30 dB and amplitude imbalance and phase imbalance of I/Q channel was ${\pm}$0.38 dBm and ${\pm}$3.47 degree respectively. The transceiver meets the required electrical performances through the individual tests. This paper shows the pulse error term depending on SAR performance was analyzed and range IRF was enhanced by applying the compensation technique.

Development and Field Test of the NEXTSat-2 Synthetic Aperture Radar (SAR) Antenna Onboard Vehicle (차세대소형위성 2호 영상 레이다 안테나 개발 및 차량 탑재 시험)

  • Shin, Goo-Hwan;Lee, Jung-Su;Jang, Tae Seong;Kim, Dong-Guk;Jung, Young-Bae
    • Journal of Space Technology and Applications
    • /
    • v.1 no.1
    • /
    • pp.33-40
    • /
    • 2021
  • Based on the requirements of a total weight of 42 kg or less, the NEXTSat-2 SAR (synthetic aperture radar) system was developed. As the NEXTSat-2 is a small-sized satellite, the SAR system was designed to account for about 40% of the dry mass of the payload relative to the total mass. Among the major components of the SAR system - which are an antenna, an RF transceiver, a baseband signal processor, and a power unit - a part with a particularly large dry mass is the antenna, the core of the SAR system. Whereas various selections are possible in consideration of gain and efficiency when designing the antenna, the micro-strip patch array antenna was adopted by reflecting the dry mass, power, and resolution required by the NEXTSat-2 project. In order to meet the mission requirement of the NEXTSat-2, the antenna was developed with a frequency of 9.65 GHz, a gain of 42.7 dBi, and a return loss of -15 dB. The performance of the antenna was verified by conducting a field test onboard the vehicle.

A Study of the Scene-based NUC Using Image-patch Homogeneity for an Airborne Focal-plane-array IR Camera (영상 패치 균질도를 이용한 항공 탑재 초점면배열 중적외선 카메라 영상 기반 불균일 보정 기법 연구)

  • Kang, Myung-Ho;Yoon, Eun-Suk;Park, Ka-Young;Koh, Yeong Jun
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.4
    • /
    • pp.146-158
    • /
    • 2022
  • The detector of a focal-plane-array mid-wave infrared (MWIR) camera has different response characteristics for each detector pixel, resulting in nonuniformity between detector pixels. In addition, image nonuniformity occurs due to heat generation inside the camera during operation. To solve this problem, in the process of camera manufacturing it is common to use a gain-and-offset table generated from a blackbody to correct the difference between detector pixels. One method of correcting nonuniformity due to internal heat generation during the operation of the camera generates a new offset value based on input frame images. This paper proposes a technique for dividing an input image into block image patches and generating offset values using only homogeneous patches, to correct the nonuniformity that occurs during camera operation. The proposed technique may not only generate a nonuniformity-correction offset that can prevent motion marks due to camera-gaze movement of the acquired image, but may also improve nonuniformity-correction performance with a small number of input images. Experimental results show that distortion such as flow marks does not occur, and good correction performance can be confirmed even with half the number of input images or fewer, compared to the traditional method.

Diversity and Directivity Mode-Switchable Planar Antenna Array (접고 펼침에 따라 다이버시티와 지향성 모드로 변환이 가능한 평면형 안테나 어레이)

  • Choe, Hyeonhyeong;Lim, Sungjoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.3
    • /
    • pp.233-238
    • /
    • 2013
  • In this paper, a novel diversity and directivity mode-switchable planar antenna array is proposed. For the diversity mode, four elements are unfolded on the plane and high isolation can be achieved. On the other hand, the antenna function is changed to the directivity mode when they are folded and stacked. Each element works such as a stacked Yagi-Uda antenna with high directivity. Especially, the curved feed line as well as the hybrid feeding method is used to improve performances. The simulation results agree well with measurement results and it is successfully demonstrated that two modes are properly working at 2.4 GHz.

Mitigation of Inter-Symbol Interference in Underwater Acoustic Communication Using Spatial Filter (공간 필터를 이용한 수중음향통신의 인접 심볼 간 간섭 완화)

  • Eom, Min-Jeong;Park, Ji-Sung;Ji, Yoon-Hee;Kim, J.S.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.1
    • /
    • pp.48-53
    • /
    • 2014
  • The underwater acoustic communication (UAC) is characterized by doubly spread channel. It is included in the time-variant doppler shift and delay-time spreads due to multiple paths. To compensate such distorted signals, various techniques including time-reversal processing, spatial diversity, phase estimator, and equalizer are being applied. In this paper, a spatial filter based on the beamforming is proposed as a method to mitigate such inter-symbol interferences that are generated in time-varying multipath channels. The proposed technique realizes coherent communications by steering the direction of the desired signals and improves the performance of UAC by increasing the signal-to-interference plus noise ratio using the array gain.