• Title/Summary/Keyword: 배액

Search Result 308, Processing Time 0.022 seconds

Mycelial growth and density of Auricularia auricula by treatments of four kinds of substances (4가지 물질 처리에 대한 목이버섯의 균사생장과 균사밀도 연구)

  • Chang, Hyun-You;Kim, Sung-Kyu;Park, Soon-Ae;Lim, Soo-Hwan
    • Journal of Mushroom
    • /
    • v.4 no.3
    • /
    • pp.122-127
    • /
    • 2006
  • This study was carried out to investigate the mycelial growth and density of A. auricula treated four kinds of substances L-citrulline, L-carnitine, Senna, Garcinia cambogia made from 10, 100, 500, 1000, 1500, 2000 times solutions respectively. Senna all treatments made from 10, 100, 500, 1000, 1500, 2000 times solutions are available for mycelial growth and density than control. Senna treatment made from 100 times solution of them is the best. L-citrulline treatment made from 500 times solution grew more much 7.86mm for 15 days than control, also it was optimal. L-carnitine treatment made from 100 times solution grew more much 3.4mm for 15 days than control, also it was optimal. Garcinia cambogia all treatments made from 10, 100, 500, 1000, 1500, 2000 times solutions were not available for mycelial growth and density than control. But Garcinia cambogia treatment made from 1000 times solution of them was similar to control. Accordingly, these solutions like that were effective to mycelial growth and density than control.

  • PDF

Effects of Non-drainage Hydroponic Culture on Growth, Yield, Quality and Root Environments of Muskmelon (Cucumis melo L.) (멜론 수경재배 시 배액제로화가 근권환경 및 수량에 미치는 영향)

  • Chang, Young Ho;Hwang, Yeon Hyeon;An, Chul Geon;Yoon, Hae Suk;An, Jae Uk;Lim, Chae Shin;Shon, Gil Man
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.348-353
    • /
    • 2012
  • This study was conducted to figure out the possibility of non-drainage in muskmelon (Cucumis melo L.) hydroponics culture. Plants were grown under 3 different levels of drainage, standard (20~40%, SD), minimum (5~10%, MD), and non-drainage (ND). Throughout cultivation periods, constant water content and electrolyte conductivity changes in root zone were observed in SD in the range of 60~70% and $1.5{\sim}2.5dS{\cdot}m^{-1}$, respectively. ND treatment caused the fluctuation in water content and electrolyte conductivity of root zone and its change ranges were 30~50% in water content and $2{\sim}6dS{\cdot}m^{-1}$ in electrolyte conductivity, but ND treatment did not decrease fruit quality. Even if fruit fresh weight was slightly lower in ND with 1,863 g, than in SD with 1,990 g, the fruit weight in ND meets standard market size, 1,800~2,000 g. Higher soluble solids content was observed in fruit in ND than in SD and MD. Total amount of drainage per plant was 27,718, 15,769 and 2,346 mL in SD, MD and ND, respectively. SD showed $83.2m^3$ drainage, 34.5% drainage of irrigation amount whereas required total irrigation amount in ND was very low with $7m^3$.

Development of Nutrient Solution Suitable for Closed System in Substrate Culture of Cucumber (오이 순환식 고형배지경에 적합한 배양액 개발)

  • 노미영;이용범;김회상;이경복;배종향
    • Journal of Bio-Environment Control
    • /
    • v.6 no.1
    • /
    • pp.1-14
    • /
    • 1997
  • This experiment was conducted to find out the compositions of nutrient solution for closed system in substrate culture of cucumber. Cucumber(Cucumis sativus L. cv. Eunsung baekdadagi) plants were grown in the substrates supplied with the nutrient solutions whose strengths were 1/2, 1, and 3/2 of the original concentration developed by National Horticultural Research Station in Japan. By increasing the nutrient concentrations, plant height decreased but leaf length, leaf width, and leaf number showed little differences. A number of marketable fruit and marketable yield were the highest in the concentration of 1 strength. The nutrient compositions of solution developed for closed system in cucumber substrate culture were N 11.4, P 3.3, K 6.0, Ca 4.5, and Mg 3.5 me.$\ell$$^{-1}$ during the vegetative growth period and N 10.4, P 3.3, K 5.0, Ca 4.5, and Mg 3,5 me.$\ell$$^{-1}$ during the reproductive growth period. To examine the suitability of nutrient solution developed in the above experiment, cucumber plants were grown in the substrates supplied with different solutions and concentrations - Yamasaki's nutrient solution(Yamasaki) of 1 S, nutrient solution of Research Station for Greenhouse Vegetable and Floriculture on the Netherlands(PTG) of 1 S, nutrient solution developed in the above experiment(SCU) of 1/2, 1, and 3/2 S. EC and pH in root zone changed little in the all treatments during growing period. As cucumber plants grew, the concentrations of N, P, and K in root zone decreased but Ca concentration increased. Net $CO_2$ assimilation rate of cucumber leaves was high in SCU of 1 and 3/2 S, and Yamasaki of 1 S. Growth of cucumber plants was the lowest in SCU of 1/2 S.

  • PDF

Optimum Strengths of Supply Nutrient Solution in Container Seedling of Trees Using Media Mixed Used-Rockwool (폐암면 혼합 상토를 이용한 수목류 용기묘의 급액 적정 농도)

  • Kim, Ho-Cheol;Lee, Soo-Won;Bae, Jong-Hyang
    • Journal of Bio-Environment Control
    • /
    • v.18 no.1
    • /
    • pp.46-50
    • /
    • 2009
  • This study was carried to investigate effects of optimum supply strengths of 'Sonneveld' nutrient solution on growth characteristics in container seedling of trees (Pinus densiflora, Torreya nucifera, Quercus acutissina and Fraxinus mandshurica) using developed media with used-rockwool. Flesh weight, height and trunk diameter in container seedling of Torreya nucifera were better in high strengths. In container seed ling of Torreya nucifera, flesh weight more increased in 1.5 and 3.0 strengths and hight and trunk diameter more increased in 1.5 strength than the rest. Flesh weight in container seedling of Quercus acutissina was heaviest in 2.0 strength and was lightest in 1.0 strength. Height and dry weight in 2.0 and 3.0 strengths and trunk diameter and total chlorophyll in 2.0 strength were better than in the rest. Besides photosynthesis rate was more high in 1.5 and 2.0 strengths than in the rest. In container seedling of Fraxinus mandshurica, flesh weight, height and trunk diameter more increased in 0.5 strength and total chlorophyll and photosynthesis rate were good in 0.5 and 2.0 strengths. Most growth characteristics were poor in 3.0 strength.

Effects of Nutrient Solution Strength on Growth and Nutrient Element Concentrations of Leaf Lettuce by Hydroponic Culture under Artificial Light (인공광을 이용한 수경재배에서 배양액 농도가 상추의 생장과 배양액 양분 농도에 미치는 영향)

  • Kim, D.E.;Lee, W.Y.;Heo, J.W.;Lee, G.I.;Kang, D.H.;Woo, Y.H.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.19 no.1
    • /
    • pp.5-14
    • /
    • 2017
  • This study was conducted to investigate the effects of nutrient solution strength on growth and nutrient element concentrations in leaf lettuce (Lactuca sativa L. cv. 'Dduksum') by hydroponic culture under fluorescent lamp and LED. Leaf lettuce were grown in closed hydroponic cultivation systems supplied with 1/2, 1 and 2 strength of nutrient solution recommended by horticultural experiment station in Japan. The growth of 'Dduksum' was highest in the 2 strength of standard nutrient solution. The amount of nutrient element in the recycled nutrient solution was higher at 2, 1 and 1/2 strength of nutrient solution. The concentration of NO3-N, Ca2+, Mg2+ in the recycled nutrient solutions increased in 1 and 2 strength of nutrient solution but that of NH4-N decreased gradually in 1/2 and 1 strength of nutrient solution. The concentration of K, Ca, Mg in leaf lettuce was maintained in the normal range, whereas the concentration of phosphorous was 1.3 to 1.6%, which was higher than proper range. As the concentration of NH4-N decreases gradually in all the treatments, it is necessary to raise the rate of NH4-N or add it.

Evaluation of Solution Mediator in Irrigation System Controlled by Drainage Level Sensor (배액전극제어법 적용시 배액 이동매개체 선발)

  • Kim, Sung-Eun;Sim, Sang-Youn;Lee, Sang-Don;Kim, Young-Shik
    • Journal of agriculture & life science
    • /
    • v.44 no.6
    • /
    • pp.23-26
    • /
    • 2010
  • Commercial fibers such as two kinds of micro-fiber, flannel, and cotton were analyzed for their nutrient solution absorption capacity to select hydrophilic mat used for the irrigation management by drainage level sensor in perlite bag culture. The selected mat was evaluated in terms of absorption capacity. Cotton had the highest absorption capacity and was revealed to be the most appropriate for the control system.

Control of Daily First Drainage Time by Irrigation Management with Drainage Level Sensor in Tomato Perlite Bag Culture (배액전극제어법에 의한 토마토 펄라이트 자루재배시 일중 첫 배액 제어)

  • Kim, Sung-Eun;Sim, Sang-Youn;Kim, Young-Shik
    • Horticultural Science & Technology
    • /
    • v.28 no.3
    • /
    • pp.409-414
    • /
    • 2010
  • The first drainage time in a day was controlled for precise irrigation management with low consumption of nutrient solution in tomato perlite bag culture system by measuring water level of drained water in drainage catchment part. This method automatically adjusted the irrigation time under any condition of light, temperature and humidity, resulting in stable water content in substrates. However, it was difficult to keep the time consistent as they were set. It drained with the deviation of 20 min in the treatment in which the first drainage time was set at 10:00 and 50 min in the treatment set at 10:30. The first drainage time was not constant, but the drain occurred stably before noon in the treatment of which irrigation frequency was longer than 30 min. The drainage ratio was better balanced in all the treatments using drainage level sensors than the treatment using time clock for irrigation control. High water and fertilizer efficiencies were obtained. Although the growth, total yield and sugar content were not significantly different between the treatments, fruit weight was higher in the treatments using drainage level sensors than that using timer.

Effect of Nutrient Solution Concentration in the Second Half of Growing Period on the Growth and Postharvest Quality of Leaf Lettuce (Lactuca sativa L.) in a Deep Flow Technique System (담액수경재배 시 재배후기 양액농도가 상추의 생장 및 수확후 품질에 미치는 영향)

  • Lee, Jung-Soo;Chang, Min-Sun
    • Horticultural Science & Technology
    • /
    • v.35 no.4
    • /
    • pp.456-464
    • /
    • 2017
  • We examined the effect of nutrient solution concentration in the second half of growing period on the pre- and postharvest characteristics of two leaf lettuce cultivars, 'Geokchima' and 'Cheongchima'. Plants were grown hydroponically in a deep flow technique (DFT) system at different concentrations of National Horticulture Research Institute hydroponic nutrient solution: 1/2 strength (S), 1S, 2S, and 4S. Lettuce leaf growth, number of leaves, and shoot fresh weight of both cultivars were greatest in plants grown in the 1S treatment. Compared to other treatments, pigment and nutrient ion contents were greater in the 4S treatment. Growth of lettuce was greatest in the 1S treatment, and decreased at higher or lower concentrations of nutrient solution. However, postharvest characteristics such as fresh weight loss, leaf chlorophyll level, and external appearance were better in both cultivars when grown in 2S solution. Variations in weight loss and SPAD values were smallest in the 2S treatment. These results show that the optimal nutrient concentration for growth does not necessarily provide the optimal postharvest storability.

Application Time of Irrigation Management by Drainage Level Sensor in Tomato Perlite Bag Culture (토마토 펄라이트 자루재배시 배액전극제어법 적용시점 구명)

  • Kim, Sung-Eun;Sim, Sang-Youn;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.19 no.1
    • /
    • pp.19-24
    • /
    • 2010
  • The experiment was implemented to introduce the drainage electrode irrigation system as early as possible after transplanting in order to save the nutrient solution in a convenient way. Drainage electrode irrigation method was introduced 15, 19 or 22 days after transplanting after irrigation was firstly controlled by time clock. Time clock method was also treated as a control plot. Drainage electrode method could be adopted from 15 days after transplanting, 15 days earlier than the present introducing time. The growth and yield was better in treatments with drainage electrode method. Water and fertilizer use efficiency were the highest in the treatment of 15 days, the lowest in time clock treatment.

Analysis of Changes in Ion Concentration with Time and Drainage Ratio under EC-based Nutrient Control in Closed-loop Soilless Culture for Sweet Pepper Plants (Capsicum annum L. 'Boogie') (EC 기준 순환식 파프리카 수경재배에서 시간 경과 및 배액율에 따른 이온농도 변화 분석)

  • Ahn, Tae-In;Shin, Jong-Wha;Son, Jung-Eek
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.298-304
    • /
    • 2010
  • Nutrient uptake by plants and drainage ratio in culture beds can affect ion balance and concentrations of nutrient solutions in electrical conductivity (EC)-based closed-loop soilless culture. This study was conducted to analyze ion concentration changes with time and drainage ratio under EC-based nutrient control in closed-loop soilless culture for sweet pepper plants (Capsicum annum L. 'Boogie'). At first experiment, ion concentrations of the nutrient solution were periodically analysed while collected drainage was being reused by mixing with fresh nutrient solution at a dilution rate of EC $2.2\;dSm^{-1}$. Changes in ion concentrations of $K^+$, $Ca^{2+}$, $Mg^{2+}$, $NO_3^-$, $SO_4^{2-}$, and $PO_4^{3-}$ were 1.13, 5.35, 0.92, 0.9, 1.10, $0.19\;meq{\cdot}L^{-1}$, respectively. Ion balance such as $K^+$ : $Ca^{2+}$ and $SO_4^{2-}$ : $NO_3^-$ were mainly affected during the recirculation of nutrient solution. At second experiment, ion concentrations and EC of drainage were compared before and after replenishment under different four drainage ratios of 7%, 16%, 39%, and 51%. Ion ratios of the recirculated nutrient solutions such as $K^+$ : $Ca^{2+}$ for cation and $SO_4^{2-}$ : $NO_3^-$ for anion were investigated. ECs of drainage decreased with increase of drainage ratio and each ion concentration showed the same trends as EC did. Ion balances in drainage with drainage ratio were a little different from each other, but each ratio could be corrected by replenishment process. The ion balance at 7% drainage ratio was closest to initial ratio and followed by 16%, 51%, and 39% in the order. Ion balance such as $K^+$ : $Ca^{2+}$ and $NO_3^-$ : $PO_4^{3-}$ were mainly affected the correction process.